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ABSTRACT

Large Language Models (LLMs) are conversational interfaces. As such, LLMs have the potential to
assist their users not only when they can fully specify the task at hand, but also to help them define,
explore, and refine what they need through multi-turn conversational exchange. Although analysis of
LLM conversation logs has confirmed that underspecification occurs frequently in user instructions,
LLM evaluation has predominantly focused on the single-turn, fully-specified instruction setting. In
this work, we perform large-scale simulation experiments to compare LLM performance in single-
and multi-turn settings. Our experiments confirm that all the top open- and closed-weight LLMs
we test exhibit significantly lower performance in multi-turn conversations than single-turn, with
an average drop of 39% across six generation tasks. Analysis of 200,000+ simulated conversations
decomposes the performance degradation into two components: a minor loss in aptitude and a
significant increase in unreliability. We find that LLMs often make assumptions in early turns and
prematurely attempt to generate final solutions, on which they overly rely. In simpler terms, we
discover that when LLMs take a wrong turn in a conversation, they get lost and do not recover.
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Figure 1: In this work, we simulate single- and multi-turn conversations for six generation tasks. The 15 LLMs we test
perform much worse in multi-turn settings (-35%) explained by some loss in aptitude, and large losses in reliability.
Aptitude is defined as performance in best-case conversation simulation, and unreliability as the gap between best- and
worst-case performance. In short, we find that LLMs get lost in multi-turn, underspecified conversation.
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1 Introduction

Today’s large language models (LLMs) function as conversational interfaces (e.g., ChatGPT, Gemini, Claude), enabling
users to interact with the LLM through multiple conversation turns. Such interaction promises to help users not only
when they know what they need (i.e., they can fully specify their requirements in an instruction), but also when they
don’t. In such cases, users might start with an underspecified instruction and further clarify their needs through turn
interactions. Though studies of LLM conversation logs have confirmed that underspecification in user instructions is
prevalent [27], LLM systems are typically evaluated in single-turn, fully-specified settings.

Even though a growing body of work proposes to evaluate LLMs in a multi-turn fashion, we identify in our review
(Section 2) that most prior work treats the conversation as episodic: conversation turns might relate to each other, but
the conversation can effectively be decomposed as an array of subtasks that can be evaluated in isolation. We argue that
episodic tasks move away from what is prevalent in human conversation: underspecification [91, 27].

In this work, we close this gap by creating a simulation environment for multi-turn underspecified conversations –
sharded simulation – that leverages existing instructions from high-quality single-turn benchmarks. At a high level,
the sharding process we propose transforms existing single-turn instructions into sharded instructions, a set of smaller
instructions that jointly deliver the same information as the original instruction. Sharded simulation then ensures that
each turn of conversation reveals at most one shard of information per conversation turn, enforcing that the instruction
is gradually revealed through the conversation.

On the set of tasks that we experimented on, we observed that models engaged in multi-turn underspecified conversations
achieved an average performance of 65%–a 25-point drop from single-turn performances of 90% when they receive the
entire instruction at the beginning of the conversation. Notably, we observe this drop in performance even in two-turn
conversations, and across all LLMs we test, from small open-weights (LLama3.1-8B-Instruct) to state-of-the-art
(Gemini 2.5 Pro).

Furthermore, we decompose the performance degradation into two components: (1) loss in aptitude, and (2) increase in
unreliability. We find that in single-turn settings, models with higher aptitude tend to be more reliable (e.g., GPT-4.1,
Gemini 2.5 Pro). On the other hand, all LLMs exhibit very high unreliability in multi-turn settings, regardless of aptitude.
We refer to this as the lost in conversation phenomenon: when LLMs take a wrong turn in multi-turn conversation, they
get lost and do not recover.

We investigate several explanations for this effect and show that the LLMs tend to (1) generate overly verbose
responses, leading them to (2) propose final solutions prematurely in conversation, (3) make incorrect assumptions
about underspecified details, and (4) rely too heavily on previous (incorrect) answer attempts.

Our findings highlight a gap between how LLMs are used in practice and how the models are being evaluated.
Ubiquitous performance degradation over multi-turn interactions is likely a reason for low uptake of AI systems
[73, 4, 28], particularly with novice users who are less skilled at providing complete, detailed instructions from the
onset of conversation [87, 35].

The rest of the paper is structured as follows: Section 2 situates our work with respect to prior work on multi-turn
evaluation. In Section 3, we describe the simulation environment we built for both single- and multi-turn conversations
on a diverse set of generation tasks. We introduce the six tasks and the metrics we use to evaluate the aptitude and
reliability of models in Section 4.1. Sections 5-6 define our main experiment involving 15 LLMs, and analyze the main
findings. Finally, the Implications section (Section 7) discusses the ramifications of the work, from the perspective of
organizations that are building LLM-based conversation products, to that of end-users of the LLM-based systems. We
provide actionable recommendations based on small-scale experiments and make a concrete call-to-action to LLM
builders, urging them to prioritize multi-turn reliability in conjunction with aptitude in future model iterations.

2 Background and Related Work

Previous-generation language models (e.g., BART [45], GPT-2 [65], or T5 [66]) were not equipped to handle multi-turn
conversations, which led evaluation to focus on single-turn tasks [79]. Conversational AI was typically implemented as
specialized systems that leveraged language models as components [36], and were evaluated through human protocols
[17, 42, 21, 54], or competitions like Amazon’s Alex Prize [67].

As the meteoric rise of ChatGPT led to increased interest in multi-turn evaluation, initial popular efforts such as
MT-bench [89] leveraged crowd-sourced annotations to evaluate LLM-as-a-judge ability. Follow-up works expanded
on MT-bench, for instance to include longer conversations [37, 18], increase evaluation granularity [2], or to tackle
different aspects such as naturalness [72] or tool use [85, 80].
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Crucially, such works typically simulate episodic conversations: each turn in the conversation introduces a subtask
that relates to previous conversation turns, but can be evaluated in isolation. In this work, we find that episodic
tasks overestimate LLM performance in multi-turn conversations (see Section 7.3). In short, although episodic tasks
require some level of multi-turn context understanding, they do not involve actively fusing the information to answer
underspecified user instructions. Underspecified user instructions are not only common in real-world human-AI
communication [27], but also a natural tendency in conversations, termed “the principle of least effort” [91]. We
show that underspecification in multi-turn conversations leads to large and universal performance degradations: LLMs
make early assumptions to fill in for missing information, prematurely attempt to propose finalized solutions, and have
difficulty adapting and course-correcting when provided with new information. We make underspecification the central
element of our evaluation setting.

Multi-turn episodic evaluation is sometimes framed as a way to evaluate multi-turn model capabilities with higher
granularity. Categories of subtasks (such as refinement, follow-up, expansion, etc.) allow for the study of more specific
LLM behavior [2, 37, 74, 19, 16, 48, 25]. According to such framing, multi-turn tasks differ from single-turn tasks and
are not evaluated on the same set of tasks. We argue that this framing is artificial and limits the scope of multi-turn
evaluation, restricting the direct comparison of multi-turn and single-turn abilities of LLMs. In our work, we conduct
both single-turn and multi-turn conversation simulations on a common set of tasks: controlled experiments that precisely
allow us to identify performance degradations from single- to multi-turn settings.

Evaluating LLMs in multi-turn settings is a challenge because conversational trajectories diverge far more than in a
single-turn. Thus, most previous studies have focused on classification or short-form tasks, with more straightforward
evaluation settings. However, the predominant use cases for LLMs are generative in nature, both for programming (e.g.,
coding assistants) and natural language (e.g., writing, summarizing) [88, 26]. Long-form evaluation in the multi-turn
setting is therefore essential, as it assesses models’ ability to flexibly adapt and refine the response as the users provide
more information. In this work, we focus exclusively on generation tasks that capture widely used scenarios in both
programming and natural language domains.

Scaling multi-turn experimentation requires simulating a user. Existing studies implemented such user simulation
in different ways: relying on templates [12, 68, 39, 16], using an LLM [63, 46, 7, 48], involving human annotators
[21, 7], or real users as part of a study [67, 38, 11]. Although involving real users leads to the most natural and realistic
conversations, it comes at the cost of scalability and reproducibility. In this work, we adopt an LLM-based simulator to
enable controlled flexibility and divergence. Nevertheless, a fully automated simulation limits the scope of our findings:
the conversations we simulate are not representative of human-AI conversations. We therefore frame the simulation
as a tool to study the LLM behavior in the multi-turn setting rather than user behavior. In addition, as detailed in the
Limitations Section (Section 9), we argue that our simulation framework is simplistic and idealized. For example, the
conversations are guaranteed to end with sufficient information to solve the tasks, and the simulator limits unexpected
behavior (e.g., derailing) that can occur in real-world settings. We suggest these choices imply that degradations
observed in this work are most likely underestimates of what occurs in real-world, underspecified multi-turn Human-AI
conversations. Appendix A introduces other related work specifically focused on underspecified communication.

3 Simulating Underspecified, Multi-Turn Conversation

To assess LLM performance in multi-turn, underspecified conversation, we develop a simulation environment that
repurposes existing tasks from single-turn benchmarks. First, we apply a sharding process to transform original
fully-specified instructions into sharded instructions. Second, we implement a sharding simulation environment that
carries out a multi-turn conversation based on a sharded instruction.

3.1 Sharding Process: From Fully-Specified to Sharded Instructions

An original, fully-specified instruction from GSM8K [14] and the equivalent sharded instruction are listed in Figure 2.

The original instruction is a single, long utterance that introduces all the content at once: a high-level question (i.e.,
“How long will it take [...]”), context, and conditions. The sharded instruction is composed of a set of shards, each
introducing a single element from the original instruction. More specifically, the first shard (Shard 1) of a sharded
instruction always introduces the high-level intent for the instruction, and subsequent shards each provide clarification to
the instruction. Taken jointly, the set of shards reflects the same information provided in the fully-specified instruction,
with the information explicitly divided across shards.

In Appendix B, we provide a more precise and mathematical definition of a sharded instruction in relation to the original
fully-specified instruction, and define five key properties a sharded instruction must satisfy to be considered valid.
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Fully-Specified Instruction (original)

Jay is making snowballs to prepare
for a snowball fight with his sister. He
can build 20 snowballs in an hour, but
2 melt every 15 minutes. How long
will it take before he has 60 snow-
balls?

(a) Original GSM8K instruction.

Sharded Instruction (based on original)

Shard 1: How long before Jay’s ready for the snowball fight?

Shard 2: He’s preparing for a snowball fight with his sister.

Shard 3: He can make 20 snowballs per hour.

Shard 4: He’s trying to get to 60 total.

Shard 5: The problem is that 2 melt every 15 minutes.

(b) Equivalent Sharded Instruction.

Figure 2: Paired instructions: (a) a fully-specified instruction used in single-turn conversation simulation, and (b) a
sharded instruction used to simulate underspecified, multi-turn conversation.

As part of our work, we developed a semi-automatic sharding process to scale the creation of sharded instructions. This
process, described in depth in Appendix C, ensured that the experiments we carried out used sharded instructions that
adhered to the properties we defined.

3.2 Simulating Sharded Conversations

Evaluated 
Assistant

Strategy
Classifier

Answer
Extractor

Task 
Evaluator

End Simulation

Start Simulation

Answer
Attempt

No unrevealed 
shards left
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≤ 1 shard

Correct 

Incorrect Next Turn
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Simulator
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...

Generate
Response

Failed answer attempt Non-answer response Successful answer attempt

Figure 3: Sharded Conversation Simulation Diagram. The subject for the simulation is highlighted in red.

Figure 3 depicts the process of simulating a multi-turn, underspecified conversation based on a sharded instruction. At a
high-level, the conversation involves three parties: the assistant is the LLM being evaluated in the simulation, the user
(simulated by an LLM) who has access to the entirety of the sharded instruction and is in charge of revealing shards
during turns of the conversation, and the system which categorizes and evaluates assistant responses.

On the first turn, the user simulator reveals the first shard of the instruction (i.e., Shard 1) to the assistant, which then
generates a free text response. The system processes the assistant’s response into one of seven possible response
strategies: clarification, refusal, hedging, interrogation, discussion, missing, or answer attempt,2 based on Herlihy et al.
[27]’s LLM response categorization. If the assistant generates an answer attempt (i.e., proposing an explicit, full-form
solution), then the answer extractor component determines the span that corresponds to the answer within the assistant’s
free-form response (e.g., code snippet, number). This step is required because LLMs often pad answer attempts with
additional information, such as a natural-language explanation or a follow-up question, which could hinder evaluation.
Finally, the extracted answer is scored by a task-specific evaluator function. Subsequent turns follow a similar pattern:
at each turn, the user simulator reveals at most one shard of information, the assistant responds freely, which gets
evaluated if the response is classified as an answer attempt. The conversation ends if one of two conditions is met:
(1) the task-evaluator assesses that an assistant answer attempt is correct, or (2) if at the start of a new turn, the user
simulator has run out of shards to reveal in the conversation.

Preliminary experiments revealed that during simulation, evaluated assistants often asked clarification questions that
related to specific shards of the instruction. As such, deciding which shard to reveal next in the conversation (the role of
the user simulator) is non-trivial, as it should take into account the state of the conversation so far. We instantiate the user
simulator as a low-cost LLM (specifically, GPT-4o-mini) that has access to the entire sharded instruction and the state of
the conversation so far, tasking it with deciding the next shard to reveal that fits most naturally in the ongoing simulated

2See Appendix G for the definition and the example for each strategy.
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conversation. The user simulator is also tasked with rephrasing the shard to fit naturally within the conversation without
modifying its informational content. See Appendix J for an example simulated sharded conversation.

Besides user messages, the assistant receives a minimal system instruction (before the first turn) that provides the
necessary context to accomplish the task (such as a database schema or a list of available API tools). Importantly,
the assistant is not explicitly informed that it is participating in a multi-turn, underspecified conversation and is not
encouraged to pursue specific conversational strategies. Although such additional instructions would likely alter model
behavior, we argue that such changes are not realistic, as such information is not available a priori in practical settings.
In summary, we provide no information about the setting to the evaluated assistant model during simulation, aiming to
assess default model behavior.

Apart from the user simulator, the strategy classifier and answer extractor components are also implemented with
prompt-based GPT-4o-mini. While the choice of LLM-based components in the simulator allows for dynamic choices
that provide a more realistic simulation, they also unavoidably lead to simulation errors, which can affect the validity of
experiments. To understand the scope of simulation errors and their effect on simulation validity, we conducted an
in-depth manual annotation of several hundred simulatesouthworth2023developingd conversations. The annotation
effort and its findings are detailed in Appendix D. In summary, we found that errors introduced by the user simulator,
strategy classifier, or answer extraction occurred in less than 5% of inspected conversations and that these errors
disfavored the assistant model in less than 2% of the conversations. We believe the process described above can
accurately simulate multi-turn, underspecified conversations based on sharded instructions, and we rely on it to simulate
conversations for our experiments.

3.3 Simulation Types
tu

rn

ConcatSharded Recap Snowball
1

5

Conversation Simulation Types

Instruction Sharding
Fully-specified

Single-Turn 
Sharded

Multi-Turn

Full

3
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Figure 4: Conversation simulation types based on sharded
instructions. Once an original fully-specified instruction
(blue block) is sharded (set of yellow blocks), the “shards”
can be used to simulate single-turn (FULL, CONCAT) or
multi-turn (SHARDED, RECAP, SNOWBALL) conversations,
affecting the pace of information disclosure.

We leverage sharded instructions to simulate five types
of single- or multi-turn conversations, as illustrated in
Figure 4. We now introduce each one and explain its
purpose in our experiments.

FULLY-SPECIFIED (short-form: FULL) simulates
single-turn, fully-specified conversations in which the
original instruction is provided to the LLM in the first
turn. This simulation type evaluates baseline model per-
formance on the tasks.

SHARDED simulates multi-turn, underspecified con-
versations as outlined above. SHARDED simulations are
our primary tool to evaluate model performance in under-
specified, multi-turn conversations.

CONCAT simulates single-turn, fully-specified con-
versation based on the sharded instruction. The shards
are concatenated into a single instruction in bullet-point
form (with one shard per line), preceded by an instruction to complete the task taking into account all bullet-points.
The CONCAT simulation is a logical mid-point between full and sharded, in which underspecification is removed (like
FULL) but the rephrasing that occurred during instruction sharding is preserved (like SHARDED). CONCAT is intended
as a verification baseline: a model that succeeds at both FULL and CONCAT, but not at SHARDED, struggles specifically
because of underspecification and the multi-turn nature of the conversation, and not due to the rephrasing that occurred
during the sharding process, which may have led to information loss.

RECAP simulates a SHARDED conversation, and adds a final recapitulation turn which restates all the shards
of the instruction in a single turn, giving the LLM one final attempt at responding. RECAP is a combination of the
SHARDED simulation followed by a CONCAT turn, and is explored as a method in Section 7.1 to evaluate whether such
a conceptually simple agent-like intervention can mitigate the loss in performance observed in SHARDED conversations.

SNOWBALL takes the RECAP simulation a step further, implementing turn-level recapitulation. At each turn, the
user simulator introduces a new shard, but also restates all the shards that have been revealed so far in the conversation,
producing a snowball effect as each turn reveals all the information from the previous turn, plus one additional shard.
The redundancy implemented in the SNOWBALL simulation is also explored as a method in Section 7.1 to study whether
turn-level reminders help alleviate the need for LLMs to recall information across multiple turns of context.
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    of 0. Detect if at any point the
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    otherwise False. 
    >>> [2 example uses]
    ”””
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Figure 5: Six sharded tasks included in our experiments. We purposefully include tasks that involve generating
programming and natural language. For each task, an illustrative fully-specified instruction and its sharded counterpart.
We sharded 90-120 instructions based on high-quality datasets (Instruction Origin), re-purposing existing evaluation.

4 Task and Metric Selection

4.1 Task Selection

We constructed sharded instructions for six tasks that we use in a large-scale simulation experiment. For each task, we
selected instructions from one or two high-quality single-turn, fully-specified benchmarks, and implemented a semi-
automatic sharding process. The process relied first on an LLM (GPT-4o) to propose and verify sharding candidates,
which were then reviewed and edited (when necessary) by the authors of the work. The sharding process (outlined
in detail in Appendix C) allowed us to scale the construction of sharded instruction corpora while ensuring validity
of the underlying instructions. For each task, we prepared 90-120 sharded instructions (each paired with the original
single-turn instructions), which required between 1-4 hours of manual inspection and annotation.

We carefully selected popular and diverse generation tasks across programming and non-programming use cases.
Figure 5 provides an example of an original and sharded instruction for each task, which we now introduce.

Code The assistant must help the user write a function in the Python programming language. The original
instructions were sourced from the HumanEval [10] and LiveCodeBench [31] datasets, two popular benchmarks used
to evaluate LLM programming aptitude.

Database The assistant is provided with the schema of an SQL database and a user query in natural language,
and must produce an SQL query that retrieves the requested information from the database (a.k.a., text-to-SQL). The
original instructions and databases were sourced from the popular Spider dataset [86].

Actions The assistant is provided with a set of API (Application Programming Interface) schemas, and a user
instruction that requires API use, and must generate the programmatic API commands that match the user request. We
sourced API schemas and user instructions from the Berkeley Function Calling Leaderboard (BFCL) [85], a popular
benchmark used to measure LLM ability at API function calling.

Math The assistant is provided with an elementary math word problem, and must perform a series of calculations
using basic arithmetic operations to reach a numerical answer. We sourced problems from the GSM8K dataset [14].
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Data-to-text The assistant is provided tabular data and several elements of related metadata, and must produce a
caption (natural language sentence) describing the underlying data. We leverage the ToTTo [59] dataset to formulate
sharded instructions.

Summary The assistant receives a corpus of around twenty documents and a user query, and must generate a
summary with citations that addresses the query based on the documents. We re-purpose the instructions from Summary
of a Haystack [40]. The summary task is the only task we include that tests long-context capabilities, with instructions
spanning several tens of thousands of tokens, which is known to deteriorate model performance [29, 32, 33].

For each task, we reuse the metrics used in the original benchmarks. More specifically, the first four tasks (Code,
Database, Actions, and Math) are evaluated for binary correctness, either by executing an answer attempt (code, SQL
query), or validating semantic equivalence to a reference answer (API call, numerical answer). The last two tasks
(Data-to-Text and Summary) are refinement tasks, which get scored on a continuous range (0-100). Data-to-text uses the
BLEU metric [58], and Summary uses a custom LLM-as-a-judge metric (“Joint Score”) built to measure information
coverage and attribution accuracy of the summary [40]. We map binary accuracy in the range of 0-100 (0 = failure, 100
= success) so that all tasks produce scores on a common scale, facilitating aggregation.

Appendix I lists implementation details of the sharding process for each task, including the sample selection process and
any task-specific logic that was implemented to facilitate reproducibility. Even though we intended for the six selected
tasks to be representative of a wide range of LLM use cases, we put effort into making the sharding process efficient
and reproducible, as we see the process itself as a contribution of our work. We envision that future LLM evaluation
practitioners can shard their own dataset artifacts to study LLM multi-turn behavior in more diverse and unique settings.

4.2 Metric Selection

LLMs employ a stochastic process to generate text. When setting LLM generation parameters to their default (e.g.,
T=1.0), LLMs generate many distinct responses for a fixed conversation state. We leverage this property to conduct
repeated simulations for a given instruction and observe the variations that occur. Each simulation yields a score Si

ranging from 0-100 that assesses the level of success of the LLM in completing the task by the end of the simulation.
Based on the set of scores S = {Si}Ni=1 obtained from running N simulations for an instruction, we define three
metrics: averaged performance (P ), aptitude (A90), and unreliability (U90

10 ):

P =

N∑
i=1

Si

/
N A90 = percentile90(S) U90

10 = percentile90(S)− percentile10(S).

Average performance P is an unbiased estimate of a model’s mean score on an instruction in a given simulation type.
Aptitude A90 is an estimate of a model’s 90th percentile score on a given instruction, a best-case metric that estimates
scores obtained in the top 10% of simulations conducted. Unreliability is an interpercentile range estimate, between the
90th and 10th percentile estimates, measuring the gap between best-case and worst-case simulations, giving a sense of
level of degradation that occurs in response quality due to stochasticity in the LLM.

Each of the metrics is computed on a per-instruction basis and can be averaged across a corpus of instructions to obtain
corpus-level metrics. In the rest of the paper, we refer to reliability and unreliability interchangeably, with reliability
defined as R90

10 = 100 − U90
10 . We also simplify the notations to A for aptitude and U for unreliability, though the

metrics can be generalized to other percentile thresholds (e.g., A80 or U95
5 ).

In Appendix E, we go over a concrete example of how an average degradation in performance (P ) from 90% to 60%
could be due to a loss in aptitude, reliability, or a combination. Finally, Figure 6a visually connects the aptitude and
unreliability metrics to score box-plot visualizations. In summary, the height of the upper whisker of the box plot
represents aptitude (A), and the distance between the upper and lower whiskers of the plot represents Unreliability (U).

5 Simulation Scale and Parameters

In the main simulation experiment, we leveraged the totality of instructions we sharded across six tasks (a total of
600 instructions), and simulated conversations across three types: FULL, CONCAT, and SHARDED. We
experimented with 15 LLMs, running N = 10 simulations for each pair of model and simulation type, totaling
more than 200,000 simulated conversations. All simulations were conducted with a default temperature of T = 1,
however, we conducted a supplementary experiment (Section 7.2) that explores the effect of temperature on aptitude
and reliability.
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Lost in Conversation Experiment

Model
FULL CONCAT SHARDED Overall

/ /
3.1-8B 27.4 64.1 82.9 13.7 63.9 7.6 21.2 47.7 83.0 15.7 62.6 6.5 21.7 25.9 45.5 13.3 37.4 3.4 91.6 62.5

OLMo2 18.8 54.8 56.1 17.2 80.0 - 16.3 40.5 49.8 14.3 80.1 - 14.4 22.4 13.8 9.0 46.3 - 86.5 50.5

3-Haiku 44.8 85.0 83.5 29.8 73.9 11.6 36.3 76.5 80.2 30.1 76.1 9.2 31.5 31.8 55.9 18.6 47.1 1.6 91.6 52.4

4o-mini 75.9 89.3 94.1 35.9 88.1 14.9 66.7 90.7 92.2 31.2 88.0 12.5 50.3 40.2 52.4 19.8 58.7 7.2 93.0 56.2

3.3-70B 72.0 91.1 95.0 34.1 91.7 15.8 52.7 87.9 97.0 32.0 91.8 14.7 51.6 35.4 71.0 22.4 61.5 10.5 93.2 64.2

Phi-4 53.2 87.6 82.7 23.9 89.2 - 48.4 79.6 76.0 28.6 90.4 - 39.1 33.1 34.1 23.2 52.5 - 99.0 61.7

CMD-A 72.0 91.9 98.5 27.7 94.5 24.3 61.6 86.1 98.4 33.2 91.9 21.3 44.9 33.6 72.0 27.9 66.0 4.9 97.3 60.4

4-Scout 73.9 92.7 98.0 35.2 96.3 13.7 60.3 81.5 98.3 28.2 92.9 13.7 46.4 27.1 69.9 26.1 67.0 12.3 91.0 66.1

o3 86.4 92.0 89.8 40.2 81.6 30.7 87.2 83.3 91.5 39.4 80.0 30.4 53.0 35.4 60.2 21.7 63.1 26.5 98.1 64.1

3.7-Sonnet 78.0 93.9 95.4 45.6 85.4 29.3 76.2 81.5 96.0 53.3 87.2 28.9 65.6 34.9 33.3 35.1 70.0 23.6 100.4 65.9

R1 99.4 92.1 97.0 27.0 95.5 26.1 97.1 89.9 97.0 36.7 92.9 24.4 70.9 31.5 47.5 20.0 67.3 17.2 103.6 60.8

4o 88.4 93.6 96.1 42.1 93.8 23.9 82.9 91.7 97.1 32.2 91.9 23.9 61.3 42.3 65.0 20.5 67.9 10.6 94.5 57.9

2.5-Flash 97.0 96.3 88.4 51.2 90.6 29.1 92.5 95.5 89.2 51.9 88.4 29.4 68.3 51.3 42.6 31.0 66.1 26.1 99.3 65.8

4.1 96.6 93.0 94.7 54.6 91.7 26.5 88.7 86.5 98.5 54.4 89.7 26.8 72.6 46.0 62.9 28.6 70.7 13.3 97.9 61.8

2.5-Pro 97.4 97.3 97.8 54.8 90.2 31.2 95.7 94.9 98.1 56.9 89.3 31.8 68.1 43.8 36.3 46.2 64.3 24.9 100.1 64.5

Table 1: Averaged Performance (P ) of LLMs on six tasks ( Code, Database, Actions, Data-to-text,
Math, and Summary). For each task, conversations are simulated in three settings: FULL, CONCAT, and

SHARDED. Models are sorted in ascending order of average FULL scores across tasks. Background color indicates
the level of degradation from the FULL setting. The last two columns average the performance drops from the CONCAT
and SHARDED compared to the FULL in percentages across the six tasks.

Although simulating ten conversations for each (LLM, instruction, simulation type) increases experimental costs
ten-fold, it allows us to not only measure averaged performance (P ) more accurately, but also study aptitude and
reliability of LLM systems in depth in Section 6.2.

We selected a total of 15 LLMs from eight model families: OpenAI (GPT-4o-mini, GPT-4o [30], o3 [57], and
GPT-4.1), Anthropic (Claude 3 Haiku, Claude 3.7 Sonnet), Google’s Gemini (Gemini 2.5 Flash, Gemini 2.5 Pro)
[75], Meta’s Llama (Llama3.1-8B-Instruct, Llama3.3-70B-Instruct, Llama 4 Scout) [23], AI2 OLMo-2-13B [56],

Microsoft Phi-4 [1], Deepseek-R1 [24], and Cohere Command-A [15]. This selection prioritizes the evaluation
of state-of-the-art models, including both small (8B) and large models (300B+). We purposefully include both open-
and closed-weights models, as well as two reasoning models (o3, R1) to study the effect additional thinking (test-time
compute) has on multi-turn conversation capability. Details on model versioning and access are listed in Appendix H.
We estimate the total cost of conducting simulations to be around $5,000.

6 Results

6.1 Average Performance Findings

Table 1 summarizes results from the simulation. At a high level, every model sees its performance degrade on
every task when comparing FULL and SHARDED performance, with an average degradation of -39%. We name
this phenomenon Lost in Conversation: models that achieve stellar (90%+) performance in the lab-like setting of
fully-specified, single-turn conversation struggle on the exact same tasks in a more realistic setting when the conversation
is underspecified and multi-turn.

In comparison, models perform roughly equivalently in the CONCAT setting, with CONCAT performance averaging
95.1% of the FULL counterpart. This implies that the loss in performance for SHARDED is not explained by potential
loss of information in sharded instructions, as such a loss would be reflected in lower CONCAT performance. We
observe that smaller models (Llama3.1-8B-Instruct, OLMo-2-13B, Claude 3 Haiku) have more pronounced CONCAT
degradations (86-92), and interpret this as indicating that smaller models struggle to generalize as well as larger models:
benign rephrasing affects performance more than for larger, more robust models. This lack of robustness to paraphrasing
can be observed visually in Table 1: CONCAT degradation (red background) is more pronounced in the top rows (weaker
models) than the bottom rows (stronger models).
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Figure 6: (a) Visual introduction to the concepts of Aptitude and Unreliability when overlaid on a box-plot visualization,
(b) reliability results based on experimental simulations with 15 LLMs, (c) summary of results from gradual sharding
experiment, with instructions sharded in gradually larger shard sets (from 1 to 8 shards).

The last column of the Table ( / ) aggregates performance degradation across the six tasks, summarizing the
magnitude of the Lost in Conversation effect for each model. Surprisingly, more performant models (Claude 3.7
Sonnet, Gemini 2.5, GPT-4.1) get equally lost in conversation compared to smaller models (Llama3.1-8B-Instruct,
Phi-4), with average degradations of 30-40%. This is in part due to metric definitions. Since smaller models achieve
lower absolute scores in FULL, they have less scope for degradation than the better models. In short, no matter how
strong an LLM’s single-turn performance is, we observe large performance degradations in the multi-turn setting.

When looking at the task-specific breakdown, some models see more muted degradations in certain tasks. For instance,
Command-A sees the least degradation on the Actions task, while Claude 3.7 Sonnet and GPT-4.1 conserve performance
well on Code, and Gemini 2.5 Pro in the Data-to-Text task. This finding indicates that the multi-turn capabilities of
models are not uniform across domains and validates the importance of benchmarking models across a wide variety of
tasks to investigate model capabilities.

Additional test-time compute (reasoning tokens) does not help models navigate multi-turn underspecification, as the
two reasoning models included in the experiment (o3, Deepseek-R1) deteriorate in similar ways to non-reasoning
models. This result confirms that additional test-time compute does not, on its own, allow models to strategize
over multi-turn conversation. The analysis we conduct identifies a potential root cause: reasoning models tend to
generate lengthier responses (on avg. 33% longer than non-reasoning LLMs). As we find in Appendix F, longer
assistant responses tend to contain more assumptions, which can derail the conversation by confusing the model on
what requirements were posed by the user vs. its own previous turn responses.

6.2 Aptitude vs. Reliability Analysis

Results presented in Table 1 present averaged performance degradation (P ). We now report on the aptitude and
reliability analysis based on metrics A and U . Figure 6b visually summarizes the results of the reliability analysis
we conducted on the 15 LLMs included in our simulation experiment. First, looking at the two single-turn settings,
we see that models that are more able (higher A) tend to be more reliable (lower U). For instance, the two most able
models (GPT-4.1 and Gemini 2.5 Pro) achieve the lowest unreliability. At the lower end, the two models with the lowest
aptitude (Llama3.1-8B-Instruct and OLMo-2-13B) are also the most unreliable. In summary, in single-turn settings,
models with higher aptitude tend to be more reliable. This fact is known in the community, with arguments made
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that better models require less prompt engineering, as they are more robust to minor variations in inputs and outputs
[47].

The sharded setting paints a different picture. Model aptitude degrades in a non-significant way between the full and
sharded settings, with an average drop of 16%. On the other hand, unreliability skyrockets with an average increase of
112% (more than doubling). More interestingly, though better models tend to have slightly higher multi-turn aptitude,
all models tend to have similar levels of unreliability. In other words, in multi-turn, underspecified settings, all
models we test exhibit very high unreliability, with performance degrading 50 percent points on average between
the best and worst simulated run for a fixed instruction. This refines our definition of the lost in conversation
phenomenon: when comparing single- and multi-turn settings, we find that large performance degradations (P ) are due
in large part to increased model unreliability (U), rather than a loss in aptitude (A).

Appendix F explores potential root causes for models getting lost in conversations. We identify four specific causes:
(1) LLMs prematurely propose full answer attempts, making assumptions about problem specifications that lead to
confusion (Appendix F.1), (2) they overly rely on previous (incorrect) answer attempts leading to lengthier “bloated”
answers (Section F.2), (3) LLMs overly adjust their answers based on the first and last turn of conversation, evidenced
by a loss-of-middle-turns phenomenon (Appendix F.3), and (4) they produce overly verbose answers, which likely
introduces assumptions that detract attention from user utterances (Section F.4).

6.3 Gradual Sharding Experiment

The multi-turn conversations simulated based on sharded conversations are not representative of underspecified
conversations that users might have with LLMs in realistic settings. In particular, the fact that sharded instructions must
be maximal (property P3) and that the simulated user must reveal at most one shard of information per turn (Section 3.2)
can seem unrealistic and adversarial. In fact, prior work has found that minor and severe underspecification appear in
equal proportions in public LLM chat logs [27]. To explore the relationship between the granularity of sharding and the
lost in conversation phenomenon, we propose the gradual sharding experiment.

In the gradual sharding experiment, we selected 31 instructions from our original experiment across multiple tasks, and
expanded each sharded instruction into seven sharded instructions, with the shard-set size growing from 2 to 8 shards.
The instruction selection and sharding process are detailed in Appendix K. The process ensured that at each shard set
size (from 1 to 8), task complexity is fixed, and the only modified factor is the granularity of sharding.

We ran simulations for the gradual sharding experiments with two models (GPT-4o and GPT-4o-mini), with results
summarized in Figure 6c. We find that both models get lost in conversation (a minor degradation in aptitude and a large
increase in unreliability) with two-shard instructions and beyond. In other words, the gradual sharding experiment
indicates that any conversation that involves underspecification and occurs in two or more turns leads to models
getting lost in conversation. For users, the granularity at which information is specified does not majorly impact
reliability: providing all the information at once (1-shard) is the only effective method to improve reliability.

7 Implications

7.1 Implications for System and Agent Builders

Simulation Type

Model

4o-mini 86.8 84.4 50.4 66.5 61.8
4o 93.0 90.9 59.1 76.6 65.3

Table 2: Experimental Results with ad-
ditional simulation types: Recap and

Snowball. Both strategies involve re-
peating user-turn information to mitigate
models getting lost in conversations.

Building LLM-based applications typically involves complex processes:
decomposition of problems, retrieval of relevant information, use of tools,
and calling of actions. Such processes are typically orchestrated by an
agentic framework (such as Autogen [84] or LangChain [8]) that allows
system builders to compose workflows with LLM calls as individual blocks.
As such, an argument could be made that multi-turn capabilities are not a
necessary feature of LLMs, as it can be offloaded to the agent framework. In
other words, do we need native multi-turn support in LLMs when an agent
framework can orchestrate interactions with users and leverage LLMs only
as single-turn operators?

To answer this question, we implemented two agent-style conversation simulation types: RECAP and SNOWBALL.
Both preprocess user utterances before sending them to the LLM. In RECAP, a conversation proceeds in the same way
as SHARDED, but a user turn is added at the end, which recapitulates all the previous user turns. SNOWBALL is a more
gradual recapitulation: at each turn, the user simulator reveals a new shard, and repeats all previously revealed shards at
that point. Both simulation types repeat the past user’s turn information to make it more prominent and give the LLM a
chance to leverage the redundancy to improve its responses. We include the experimental detail in Appendix M.
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Table 2 summarizes the results on all instructions for four tasks (Code, Database, Math, Actions) for two tested
models (GPT-4o, GPT-4o-mini). Both RECAP and SNOWBALL demonstrate some level of success, with improvements
over SHARDED simulations, but the performance still lags behind FULL or CONCAT. While RECAP outperforms
SNOWBALL, we note that RECAP is an unrealistic setting because the intervention is conducted on the last turn of the
conversation, which is not known a priori when conversation unfolds with a real user. SNOWBALL gives a sense of
realistic performance gains achievable through user-turn repetition: it can mitigate the FULL-to-SHARDED performance
deterioration by 15-20%. In short, relying on an agent-like framework to process information might be limiting, and we
argue LLMs should natively support multi-turn interaction.

7.2 Implications for LLM Builders

A lot of effort has been put in improving LLM aptitude: demonstrating that LLMs can accomplish tasks of increasing
intellectual complexity, with recent results showing LLMs can compete in mathematics Olympiads, or solve Ph.D.-level
technical questions in a benchmark aptly named Humanity’s Last Exam [62].

In this work, we call on LLM builders to prioritize reliability of the models they build, as our experiments demonstrate
that the randomness involved in generating text with LLMs leads to catastrophic unreliability in all the models we
tested, degrading the quality of responses the average LLM users see.

LLMs are probabilistic systems, with parameters such as temperature that can adjust the degree of randomness that
occurs while generating text. A possible argument is therefore: does setting the temperature to its lowest setting (T = 0)
effectively resolve the reliability concern, as it makes the generation process more (but not entirely) deterministic?

To evaluate this argument, we conducted a supplementary experiment in which the assistant’s temperature for generating
responses (AT) was varied to three values: 1.0, 0.5, and 0.0. Additionally, since SHARDED simulation uses an LLM-
based user simulator, we also varied the user’s temperature (UT) with the same three values. Further details on the
experiment, including sample selection and simulation scale, are in Appendix L.

4o-mini 4o

Simulation AT=1.0 AT=0.5 AT=0.0 AT=1.0 AT=0.5 AT=0.0

FULL 16.0 15.0 6.8 17.8 8.0 2.8
CONCAT 20.2 17.8 9.5 20.2 17.8 5.8

UT=1.0 49.8 46.8 51.0 41.0 43.8 31.8
UT=0.5 31.7 34.0 40.5 39.5 40.8 31.8
UT=0.0 38.5 28.0 30.5 35.8 38.0 29.7

Table 3: Unreliability of models when chang-
ing assistant temperature (AT) and user tem-
perature (UT) in FULL, CONCAT and

SHARDED settings. The lower the number
the more reliable the assistant is.

Table 3 summarizes the experimental findings. Looking at the FULL
and CONCAT settings (first two rows), both GPT-4o-mini and GPT-
4o observe a large improvement in reliability when temperature is
decreased, with a drop in unreliability (U90

10 ) of 50-80% when the
assistant temperature decreases. Results from SHARDED simula-
tions are more alarming: GPT-4o-mini does not see improvements
in reliability as AT is decreased (in all user-temperature settings), and
GPT-4o only sees minor improvements, on the order of 15-20%. Even
when both the user and assistant temperatures are set to 0.0, there
remains a large unreliability of around 30%. Even though language
models are supposed to be deterministic at T = 0.0, this is known
to practically not be the case for modern LLMs (see Appendix N for
discussion). At a high level, single-turn conversations have limited
scope for deviation, whereas one token difference in an early turn of a multi-turn conversation can lead to cascading
deviations, which we observe as stagnated unreliability. For settings that involve multi-turn interaction, we find that
lowering the temperature of the LLM when generating responses is ineffective in improving system reliability.

We invite and challenge LLM builders to jointly optimize model aptitude and reliability. A reliable LLM should: (1)
achieve similar aptitude in single- and multi-turn settings, (2) have small unreliability (U90

10 < 15) in multi-turn settings,
(3) achieve these at unmodified temperature (T = 1.0), demonstrating that the underlying language model can handle
variations that naturally occur in language generation.

7.3 Implications for NLP Practitioners

Our experiments demonstrate that model behavior in single- and multi-turn settings on the same underlying set of
instructions can diverge in important ways, for example, with large observed degradations in performance and reliability.

We selected the initial six tasks to span a wide range of generation tasks, from programming to multi-document
summarization. Yet this set of tasks is limited across multiple dimensions, such as focusing on English-language
instructions and analytical (i.e., non-creative) tasks. We put effort into making the sharding process scalable by
automating portions that could be handled by an LLM, while manually validating and finalizing samples for quality
control. The sharding process – detailed in Appendix C – required an average of three hours of manual work (prompt
engineering or inspection) from an author to prepare and finalize 100 sharded instructions.
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We encourage NLP practitioners to experiment with sharding and release sharded versions of their tasks and instructions
alongside fully specified ones.

Translation

Model

4o-mini 41.7 43.4 42.1
4o 35.9 38.5 40.9

Table 4: Performance on the
translation task for FULL,
CONCAT, and SHARDED

simulations.

To illustrate the feasibility of sharding new tasks, and understand compatibility
requirements for sharding, we prepared sharded instructions for a seventh task:
Translation. The task consists of translating an entire document (10 sentences) from
German to English, leveraging paired documents from WMT 2019 on document-
level translation [70]. In the SHARDED setting, each turn reveals two additional
sentences from the source document and requires the assistant to translate all
sentences provided so far, whereas the FULL and CONCAT settings reveal the entire
document in the first turn. Evaluation is conducted with the standard BLEU metric
[58]. We describe practical implementation details in Appendix I.

Results from FULL, CONCAT, and SHARDED simulations are summarized in Table 4.
Both models we tested – GPT-4o-mini and GPT-4o – do not exhibit degradation in performance in the SHARDED setting,
with BLEU scores being within 10% difference of each other in all settings. We believe this result reflects that the task
can largely be accomplished at the sentence-level despite some prior work has framed translation at the document-level
[64], and that the BLEU score does not adequately capture document-level nuances [52]. In other words, if a task is
episodic (i.e., it can be decomposed into turn-level subtasks), the models can avoid getting lost in conversation by
completing each subtask without having to handle multi-turn context. In short, the SHARDED Translation task simulates
multi-turn conversations that are not underspecified.

We now list task properties we believe are important in leading models to get lost in conversation in multi-turn settings.
First, generative tasks (i.e., unlike extractive QA or classification) are more prone to model confusion, as they typically
involve editing and refinement of new content. Second, the generative tasks should be sufficiently complex, involving
multiple explicit specifications that will yield a multitude of shards. For example, an instruction: “Write a Python
program that calculates 1 + 1” is too simple to shard. Third, the solution or answer should be non-decomposable, such
that revealing a shard modifies the entire solution (unlike the translation task, where each additional shard only asks
to translate and append to the ongoing solution). We hypothesize that LLMs tested on tasks with the aforementioned
three properties will likely get lost in conversation, evidenced by a large drop in averaged performance and reliability in
SHARDED simulations.

7.4 Implications for Users of Conversational Systems

Users of LLM-based products should be aware of the lack of reliability of LLMs, particularly when used in multi-turn
settings. Generally available generative technology is new, and prior work has identified the randomness in LLM-
generated text as a point of confusion for users [55, 81, 77, 43]. We make two practical recommendations that can help
users of LLM-based systems get the most out of their exchanges.

If time allows, try again. If a conversation with an LLM did not lead to expected outcomes, starting a new conversation
that repeats the same information might yield significantly better outcomes than continuing an ongoing conversation.
This is because current LLMs can get lost in the conversation, and our experiments show that persisting in a conversation
with the model is ineffective. In addition, since LLMs generate text with randomness, a new conversation may lead to
improved outcomes.

Consolidate before retrying. Since LLMs are ineffective at dealing with information dispersed across multiple turns,
consolidating instruction requirements into a single instruction is an effective strategy to improve the model’s aptitude
and reliability (as shown by the CONCAT experiments). When a user notices that a model is lost in conversation, they
can ask the LLM: “Please consolidate everything I’ve told you so far,” then bring the response to a new conversation,
alleviating the need for manual consolidation. In practice, there is anecdotal evidence that early adopters of LLM-based
applications are aware that LLMs get lost in conversation. For example, users of the Cursor LLM-based coding
environment report that frequently creating new conversations “whenever they can” is a recommended strategy to
ensure high quality responses even though the tool allows to keep conversations going indefinitely.3

These two recommendations remain cumbersome for users and can only offer patched solutions rather than a principled
approach. Once future LLMs can more reliably handle multi-turn conversations, the need for such recommendations
should be alleviated, allowing users to communicate underspecified instructions over multiple turns naturally with less
risk of the model getting lost in conversation.

3https://www.reddit.com/r/cursor/comments/1j72r8d/when_to_start_a_new_chat/
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8 Conclusion

In this work, we conduct a large-scale simulation of single- and multi-turn conversations with LLMs, and find that on a
fixed set of tasks, LLM performance degrades significantly in multi-turn, underspecified settings. LLMs get lost in
conversation, which materializes as a significant decrease in reliability as models struggle to maintain context across
turns, make premature assumptions, and over-rely on their previous responses. Additional experiments reveal that
known remediations that work for simpler settings (such as agent-like concatenation or decreasing temperature during
generation) are ineffective in multi-turn settings, and we call on LLM builders to prioritize the reliability of models in
multi-turn settings.

9 Limitations

A first limitation of our work is the reliance on fully automated simulation. By relying on an LLM to simulate user
utterances, we can scale our experiments, including running the same simulation multiple times, which would be
cost-prohibitive with real users. However, the simulations we obtain are not representative of natural human-AI
conversation. The properties of the sharding process (defined in Appendix C) and of the simulation environment
(see Section 3.2) ensure that the simulated conversations follow a rather narrow structure, likely not modeling the
full range of conversation dynamics that occur with a large, diverse user population. For example, the simulation
process ensures a new shard of information is revealed at each turn, and that the last turn of the conversation has
specified all the information needed to complete the task which might not happen with real users. Properties P1, P2,
and P5 of the sharding process also restrict the scope of the conversation, as sharded instructions closely match an
existing fully-specified instruction, with the high-level intent always identified in the conversation’s first turn. The
minimal nature of shards is also unrealistic and potentially adversarial, though the gradual sharding experiment finds
that different levels of shard granularity lead to similar performance degradations, as soon as conversations occur
over two turns or more. Apart from sharding granularity, automatic simulation also lacks the nuance that can occur
when a human is involved in conversation, from misunderstandings over terminology, giving up due to frustration with
system failures [82], or the lack of a feasible end goal for certain conversations (e.g., the user wanting a solution to an
unsolved problem). Because of these factors, we believe conducted simulations represent a benign testing ground for
LLM multi-turn capabilities. Because of the overly simplified conditions of simulation, we believe the degradation
observed in experiments is most likely an underestimate of LLM unreliability, and how frequently LLMs get lost
in conversation in real-world settings. The experiments serve as a scalable, low-cost experimental environment for
studying LLMs in multi-turn settings.

A second limitation of our work is the focus on analytical tasks. Although we selected a diverse set of both programming
and natural language tasks, we restricted experiments to tasks that involve an analytical solution. This restriction limits
the scope of our findings, as we do not establish whether models get lost in conversation on more open-ended tasks,
such as creative writing [5]. This was a conscious choice: though there has been some progress on creative writing
evaluation, it is still an active area of research [6], and we relied on more established tasks and metrics for the initial set
of experiments. Determining whether degradation occurs – and if so, identifying the magnitude – on creative tasks is an
important direction for future work.

A third limitation of the work is the focus on text-only tasks in the English language. Establishing whether models get
lost in conversation in other languages, or in tasks that involve multiple modalities in either user or assistant utterances,
could help establish the scope of the degradation observed in LLM multi-turn capabilities.
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Appendices
Appendix A Related work on Underspecification

The Background (Section 2) reviews the most directly related prior work, focused on multi-turn evaluation. We now
cover other related prior works that have studied underspecification.

Prior work on communication and linguistics has identified underspecification as a common feature of human language
[41, 20, 22, 61].

Understanding how LLMs handle underspecified instructions is crucial towards improving conversational capabilities.
To this end, Herlihy et al. [27] identified common response patterns such as hedging, refusal, clarification, and
interrogation when underspecified queries are presented to conversational LLM systems, and proposed mechanisms
to recover from them. Malaviya et al. [53] highlighted the importance of supporting context for more accurate and
principled evaluation of LLM responses on underspecified queries, and Sarkar et al. [69] showed that a system that
proactively rewrites user instructions to account for underspecification leads to improved LLM response. Shaikh et al.
[71] studied the degree of grounding (i.e., clarifications and follow-up questions) that LLMs perform in conversation
logs and observed that they significantly lack in generating follow-up questions, where humans are 15 times more likely
to do so. Chang et al. [7] hired annotators to manually reproduce fully-specified instructions through a chat interface,
and found that the users reveal the entirety of the instruction in 34% of the time, leaving some detail underspecified a
majority of the time.

Several works have explored direct tasks to evaluate model ability when dealing with underspecification. Liu et al. [49]
introduced AmbiEnt, a natural language inference benchmark, which revealed that understanding ambiguous statements
is still a challenge even to the state-of-the-art LLMs. Wildenburg et al. [83] created the DUST task, which requires the
language model to determine the relative levels of specifications between two sentences, finding that when interpreting
underspecified sentences, LMs exhibit little uncertainty. Vijayvargiya et al. [78] evaluated LLM agents for GitHub issue
resolution in an underspecified setting, showing that follow-up interactions to supplement information helps improve
the resolve rate but detecting the ambiguities in the instructions remains a challenge.

Prior work has classified different root causes for underspecification. First, task underspecification occurs when humans
provide incomplete descriptions of the task at hand, which is prominent in “specification-heavy tasks” [60]. Second,
intent misalignment occur when the AI fails to understand the user’s intent or motivation, and is one of the common
sources of user dissatisfaction [34, 76]. Finally, Chaturvedi et al. [9] discuss location and and reference ambiguity, in
emboddied settings that involve physical spaces such as a Minecraft game.

Appendix B Precise Definition of Sharded Instructions

Section 3.1 introduces the concept of sharding at a high level. This Appendix offers a more precise definition by first
defining mathematical terminology, and then defining properties that a sharded instruction must satisfy to be considered
valid.

Let q refer to a single-turn complex query with intended (i.e., correct) output Y ∗
q . We refer to the atomic content units

(ACU) [51] of the query as
I(q) = [I, (c1, · · · , cm)]

where I is the primary intent of the query and (c1, · · · , cm) are the sufficient set of clarifications that specify details of
how to compute Y ∗

q conditioned on I. For I(q) to be considered atomic, any rephrasing of I(q) should produce the
same target output. Ie. for all q′ s.t. I(q′) = I(q), then Y ′∗

q = Y ∗
q .

Given the above definition, the aim of the sharding process, for a given query q, is to identify the atomic content units
I(q) and construct a set of shorter instruction shards s:

q′ = [s1, · · · sk] s.t. I(q) = I(q′)

where the shards sj can be used to simulate multi-turn conversation, with the same intended output as q.

A sharded instruction q′ is considered valid for an original query q if it fulfills the following properties:
P1: Information Preservation. I(q) = I(q′) No information from the original instruction necessary for the
completion of the instruction should be lost during the sharding process.
P2: Clear Initial Intent. Iq = Iq′ and s1 = Iq. The first shard plays a distinctive role of being the initial query
within the shard set. The initial query defines the high-level objective for the entire conversation. (e.g., “write a Python
function”).
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Figure 7: Process diagram of the four-step semi-automatic process to transform fully-specified instructions into a
sharded instruction. The first three steps (segmentation, rephrasing, verification) are automated, while the fourth (inspect
and edit) was manually completed by the authors of the work. The last row represents the rejection criteria for a sample.

P3: Order Insensitive. Apart from the first shard, the other shards should be decontextualized [13] and not refer to
each other in a way that implies an order. As a result, the shard set presented in any order reveals equivalent information.
Let ρ(s2..k) refer to a permutation of the shard ordering, then I(q) = I(q̃) ∀q̃ = [s1, ρ(s2..k)]

P4: Maximal Sharding. The sharding process should strive to maximize the number of shards extracted from the
original instruction (maximize k). This can be achieved by producing shards that introduce a single, specific piece of
information.
P5: Minimal Transformation. The sharded instruction should maintain the instruction language and avoid simpli-
fying, altering, or interpreting elements of the original instruction as much as possible. Apart from modifications to
satisfy properties P1-P4, the sharding process should attempt to limit modifications such that the shards ([s1, · · · sk] are
semantically similar to the atomic content units I(q).

Appendix C Semi-Automatic Sharding Process

We rely on a semi-automatic process to transform fully-specified instructions into their sharded equivalents. The process
– illustrated in Figure 7 – consists of a sequence of three automated steps (Segmentation, Rephrasing, Verification)
followed by a manual step that was conducted by an author of the paper.

We now detail each step of the process, then go over task-specific details we implemented as needed. We note that as
part of our open-source release, we provide all the prompts used in the first three LLM-based steps.

Step 1: Segmentation Given an original fully-specified instruction (left-most column in Figure 7), the LLM is
prompted to extract segments of the instructions. Segments are intended to correspond to the atomic content units
(defined in Appendix B). In particular, the prompt indicates that segments must not overlap, and that not all words in
the original instruction must belong to a segment. Prompts are task-specific and incorporate at least three few-shot
examples of segmentation, to allow for the concept of segmentation to be illustrated through examples. At this stage,
any instruction that yields fewer than three segments are filtered out and does not proceed to the next stage.

Step 2: Rephrasing Given the original fully-specified instruction and the extracted segments, this stage consists in
rewriting each segment to be decontextualized [13] and conversational. In other words, dependencies between segments
are resolved, and the ordering is changed such that obtained shards adhere to properties P2 and P5. In the example
above, the fourth segment (highlighted in orange) becomes the first shard as it reveals the overall intent, and light
rephrasing occur in other shards. The rephrasing prompt is task-specific, and includes few-shot examples of rephrasing
segmented instructions.

Step 3: Verification Steps 1-2 produce a sharded instruction that can be used to simulate SHARDED and CONCAT
conversations. To verify the property P1 (Information Preservation) that no information has been lost during segmenta-
tion and rephrasing, we conduct preliminary simulations to evaluate the original and sharded instruction side-by-side.
Specifically for each pair of the original and the sharded instruction, we simulate ten FULL conversations with the
original instruction, ten CONCAT conversations with the sharded instruction (by concatenating the shards), and ten
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SHUFFLE-CONCAT conversations. SHUFFLE-CONCAT is a variant of the CONCAT simulation in which all shards
(except Shard 1) are randomly permuted before being concatenated. This variant can be seen as a more adversarial
version of CONCAT, verifying the property P3 (Order Insensitive). For each simulation type, we calculate the averaged
performance P over ten runs and filter out instructions that are below an acceptable degradation threshold. Specifically,
instructions are acceptable if the following conditions are met:

P CONCAT ≥ 0.8 P FULL

P SHUFFLE-CONCAT ≥ 0.8 P FULL,

where P X denotes the averaged performance of the simulation type X. If more degradation is observed (i.e., below
80%), it indicates a potential loss of information during sharding, or that decontextualization was not implemented
accurately.

Step 4: Inspect and Edit Even though the first three steps define the sharding process and implement some level of
quality assurance, they do not guarantee the level of quality required for precise and large-scale experiments due to
relying on LLM outputs. To obtain high-quality shards, we reserve step 4 for manual inspection and validation. To
facilitate the procedure, we developed a web-based annotation interface. In the interface, an annotator can review a pair
of fully-specified and sharded instructions, edit, add, or remove individual shards, and decide to accept or reject sharded
instructions. Sharded instructions included in our experiments were all manually reviewed by two authors of the work.
The amount of editing and filtering required in this final stage varied by task.

Inspecting and editing an auto-generated instruction typically requires 1-3 minutes per instruction, an order of magnitude
less than it would require for authors to write the sharded instructions de-novo from a given fully-specified instruction.
As part of our open-source release, we provide all the prompts used during sharding, which we hope can facilitate the
sharding of additional tasks.

Appendix D Inspection of Simulated Sharded Conversation

Inspection All Tasks Actions Code Math Db

Shard Fully Revealed 96.0 98.3 94.9 93.4 100.0
Shard Contextualized 98.4 98.3 98.3 98.3 98.6

Strategy Accuracy 95.2 94.7 95.5 95.6 94.7
Extraction Success 97.0 100.0 93.4 98.4 100.0

Overall Success 97.8 100.0 96.0 96.0 100.0

Table 5: Results of the inspection of 100 simulated sharded
conversations across four tasks: Actions, Code, Math, and
Database. The first column aggregates annotation results on
the four tasks.

The sharding simulation environment (described in Sec-
tion 3) relies on LLM components to simulate the user,
classify assistant responses, and extract answers from
free-text responses. LLM-based components are likely
to fail, and we performed an inspection of 200 simulated
SHARDED conversations to understand the level of sim-
ulation error and the potential effect on estimating the
performance of the assistant LLMs due to the error.

For each inspected conversation, we annotated user turns,
assistant turns, and the overall conversation with five
specific elements.

For user utterances, we annotated whether the utterance revealed exactly the information from one shard in the sharded
instruction (Shard Fully Revealed). Specifically, we flagged turns that revealed more than one shard, and turns that
revealed a shard only partially. We also annotated each user’s turn for whether it is appropriately contextualized in
the conversation (Shard Contextualized). For example, if the previous assistant’s turn asked a binary clarification
question (yes/no), then proper contextualization would require a Yes/No response to directly address the assistant’s
response.

For assistant utterances, we annotated whether the classified strategy was accurate (Strategy Accuracy). For example,
if the response is labeled as a clarification, we confirm if it poses a clarification question to the user. When assistant
utterances were labeled as answer attempts, we further labeled whether the answer extraction step was successful
(Extraction Success).

Upon completing the inspection of each user and assistance utterance, we assigned a global label to the entire
conversation on whether or not the errors that occurred during simulation (if any) affected the overall validity of the
simulation. If not, the simulation was marked as successful (Overall Success).

We inspected conversations for four tasks: Actions, Code, Math and Database. The other two (Summary and Data-to-
text) are refining tasks that require an answer attempt at each turn, and do not rely on an LLM-based user simulator. As
such, they have limited scope for simulation error.

Table 5 summarizes the results of the inspection annotation. Overall, the simulation environment is highly reliable,
with roughly 98% of inspected conversations labeled as successful. Some errors occur in each component. With user
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simulation, a single shard is fully revealed around 96% of the time, and properly contextualized 98% of the time. The
processing of assistant responses also leads to errors: the turn strategy classification is only 95% accurate, and extraction
of answer attempts has an accuracy of 97%.

Utterance-level errors did not always affect the validity of the overall simulation. In some cases, we observed that
the user simulator would correct an error in an early turn, subsequently in the conversation, or that an error in answer
extraction on the wrong answer attempt would occur at a turn, but the extraction would be successful later on. In
summary, we empirically find that the simulation environment is largely accurate: though some errors occur, large
drops of performance in the SHARDED setting (beyond 2%) are not due to errors caused by the simulator.

Appendix E Concrete Example of Loss in Aptitude vs. Reliability

Let’s imagine we are provided with ten instructions (N = 10), each FULL and SHARDED. We run simulations with an
LLM, simulating 10 conversations per instruction and setting (M = 10). Let’s assume the LLM achieves an averaged
performance (P ) of 90% in the FULL, and 60% in the SHARDED setting.

Finally, let’s assume that the FULL performance is achieved by having perfect performance (i.e., success in 10/10
randomly sampled runs) on 9 instructions, and failing on all the sampled simulations of the last, tenth instruction. In
other words:

SFULL
ij =

{
100, if i ∈ {1, . . . , 9}
0, if i = 10

,

where SFULL
ij represents the score for i-th instruction at j-th simulation run. The aptitude (A) and unreliability (U ) of

the LLM for the FULL setting is A = 90% and U = 0% (i.e., for each instruction, the 10th and 90th percentile scores
are equal).
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Figure 8: Illustrations for different situations.
Green and red fills in each grid indicate sample-
level score (e.g., pass / exact match). Compared
to FULL (top left), three situations in SHARDED
achieve the same P = 60 while varying in apti-
tude A and unreliability U .

Let’s now consider three conditions for the SHARDED setting that
all achieve an averaged performance of P = 60%. We illustrate the
conditions in Figure 8.

Situation 1: Drop in Aptitude. The LLM achieves perfect perfor-
mance on six of the ten instructions:

SSHARDED
ij =

{
100, if i ∈ {1, . . . , 6}
0, if i ∈ {7, . . . , 10} .

In situation 1, P = 60%, A = 60%, and U = 0%. The degradation
in performance is entirely explained by a decrease in aptitude, while
the reliability remains the same.

Situation 2: Drop in Reliability. The LLM achieves mixed perfor-
mance (6-7 perfect scores per instruction) on nine of the 10 instruc-
tions:

SSHARDED
ij =


100, if 1 ≤ i ≤ 3, 1 ≤ j ≤ 6

100, if 4 ≤ i ≤ 9, 1 ≤ j ≤ 7

0, otherwise
.

In situation 2, P = 60%, with an aptitude of A = 90%, and a unreliability of U = 90%. The degradation in
performance is entirely explained by a large drop in reliability, while sharded and fully-specified aptitude are equal.

Situations 1 and 2 illustrate extreme scenarios where the average drop in performance is entirely explained by a drop in
aptitude or reliability, but in practice a combination is more likely to occur, as in situation 3.

Situation 3: Combined drop in Aptitude and Reliability. The LLM achieves perfect performance on three
instructions, and mixed performance (6 perfect scores per instruction) on five of the 10 instructions:
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SSHARDED
ij =


100, if 1 ≤ i ≤ 3

100, if 4 ≤ i ≤ 8, 1 ≤ j ≤ 6

0, otherwise
.

In situation 3, P = 60%, with an aptitude of A = 80%, and a unreliability of U = 60%. Note that situation 3 leads to a
larger increase in unreliability (from 0% to 60%) than a decrease in aptitude (from 90% to 80%) when compared to
fully-specific simulations. This corresponds in practice to our observation: drops in performance are explained by small
drops in aptitude and large drops in reliability.

Finally, we note that though this concrete example we provide uses binary scores (0 and 100) for simulated conversation
outcomes, aptitude (A) and unreliability (U) can equally be applied to continuous metrics (such as BLEU).

Appendix F Qualitative Analyses of Simulation Logs

In the following subsections, we report qualitative analyses on the corpus of simulations from the main experiment
(Section 6.1). The purpose of the analyses is to discern root causes in model behavior that lead to performance
degradation. We identify four behaviors below and provide the analysis for each item in the rest of the section:

1. LLMs attempt to answer the entire problem prematurely.
2. LLMs overly rely on previous (incorrect) answer attempts, leading to lengthier “bloated” answers.
3. LLMs overly adjust their answers based on the last conversation turn, materialized by a pronounced forgetting

of middle-turns.
4. LLMs produce answers that are overly verbose, which likely introduce problem assumptions that detract

attention from user-utterances.

F.1 Premature Answer Attempts

Conversation Progress At First Answer Attempt

Model 0-20% 20-40% 40-60% 60-80% 80-100%

First answer
attempt is ...

earliest early midway late latest

3.1-8B 16.1 24.0 35.3 39.6 39.7
OLMo2 17.6 32.7 37.7 47.3 26.4
3-Haiku 27.1 35.6 47.4 58.9 70.3
4o-mini 30.2 39.2 48.4 58.2 59.9
3.3-70B 33.3 40.1 51.2 60.0 69.3
Phi-4 25.7 33.1 47.0 53.0 57.9
CMD-A 38.0 42.9 56.5 65.5 73.5
4-Scout 39.8 36.8 51.0 57.9 64.8
o3 21.0 37.9 51.9 58.4 68.0
3.7-Sonnet 29.2 35.6 55.3 68.0 71.6
R1 39.5 43.1 53.5 66.4 50.2
4o 36.0 41.4 56.2 65.6 90.4
2.5-Flash 39.0 48.6 60.2 70.8 74.6
4.1 33.9 52.7 60.6 69.0 78.6
2.5-Pro 41.1 45.7 53.5 64.6 63.8

Average 30.9 40.5 51.7 60.4 64.4

Table 6: Averaged performance (P ) breakdown,
based on how early in the conversation the LLM
makes its first answer attempt. Analysis con-
ducted on simulations of two tasks: Code and
Math.

During SHARDED simulation, responses are classified according to
a seven-class conversation strategy categorization. In particular, each
assistant response is tagged as being a formal answer attempt or
not (as answer attempts require further processing: extraction and
evaluation by the task-specific evaluator).

On the onset of conversation, LLMs have the least amount of in-
formation (highest level of underspecification), and are least likely
to formulate correct answer attempts. Proposing a solution early
might therefore plant certain incorrect elements in it, which wrongly
influences the interaction later in the conversation.

To evaluate this hypothesis, we bin all simulated conversations from
our experiments based on how early in the conversation the first
answer attempt is generated by the LLM. Specifically, we create five
bins: 0-20% if the first answer attempt occurs within the first 20%
turns of the conversation, and 20-40%, 40-60%, 60-80%, and 80-100%
if it occurs in later turns of the conversation. Of the six tasks included
in our experiments, only two (Math and Code) observed a significant
range in LLM behavior for answer attempt timing. For the other four
tasks, models attempt an answer from the first turn in most of the
time, rendering analysis on this parameter impossible.

Analysis results for the two remaining tasks are presented in Table 6. We observe that for every single model,
conversations with a later first answer attempt lead to higher averaged performance. Across all models, conversations
with the first attempt being made in the first 20% of conversations achieve a score of 30.9, less than half of the 64.4
when the LLM waits for the last 20% of the conversation to make an answer attempt.

In other words, we find that premature answer attempts detract LLM performance. Conversations where the model
clarifies user instructions or discusses the problem at a high-level before moving to generating complete answer attempts
lead to higher performance. We hypothesize that this is due to the model making incorrect assumptions in premature
solutions, which conflict with subsequent user instructions in later turns.
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F.2 Answer Bloat in Multi-Turn Conversation
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Figure 9: Average length (in number of characters) of answer attempts across four tasks (Code, Database, Data-to-text,
and Summary) in SHARDED conversations. Answer attempts in the FULL and CONCAT settings tend to be shorter on
average than those from SHARDED setting. SHARDED answer attempts increase in length as the LLMs make more
answer attempts.

In multi-turn conversation simulations, the LLM might make multiple answer attempts, with each subsequent attempt
being potentially based on previous attempts. In contrast, single-turn conversations constrain conversation dynamics,
with the LLM making a single, first-and-final answer attempt.

To understand multi-turn conversation dynamics, we calculate the average length of answer attempts in each simulation
type. For the SHARDED setting, we calculate average length for each attempt within a simulation (i.e., average length
of the first attempt, second attempt, third attempt, etc.). We note for readers here that the analysis is conducted on
extracted answer attempts (output of the Answer Extractor module in Figure 3) rather than the entire assistant responses.
The extracted answer more accurately measures dynamics in answer attempts (i.e., generated SQL query, or Python
function) rather than the entire responses, which might contain varying amounts of unrelated content.

Results of the analysis are plotted in Figure 9. Across the four tasks, we find that answer lengths in the FULL and
CONCAT settings tend to be similar, typically within 2-10% of each other. On three of the analyzed tasks (Code,
Database, Summary), the first answer attempt in the SHARDED setting has a similar length to FULL and CONCAT
counterparts, yet for each subsequent answer attempt, we observe an increase in average answer length. The effect
is such that the final answer attempts in SHARDED conversations (right portion of the four plots) tend to be 20-300%
longer than the solutions generated in the FULL and CONCAT settings. We name this observation the answer bloat
effect: as a multi-turn conversation progresses, the LLM generates incorrect answer attempts, making assumptions
about portions of the instruction that remain unspecified. As the user reveals additional information in succeeding turns,
the LLM does not successfully invalidate its prior assumptions and overly relies on its previous attempts. Answer bloat
in multi-turn, underspecified conversation leads to longer solutions compared to single-turn equivalents.

We perform an additional analysis, focusing only on the Code and Database tasks and filtering to simulations where the
LLM reaches an entirely correct solution (score of 100.0). For Code task, correct programs obtained from SHARDED
setting are on average 850 characters long, which is 27% more characters than the correct solutions generated in the
FULL setting (668 characters on average). For Database, correct SQL queries in the SHARDED setting are on average
129 characters, 14% more characters than those from the FULL setting (113 characters). In summary, LLMs are less
likely to reach a correct solution in multi-turn settings (lower P ), and when they do, the final solutions they reach are
longer (bloated), hinting that the solutions are qualitatively worse.

F.3 Over-adjust based on Last Turn of Conversation

Because the summary task requires the assistant to attribute its summary back to documents through citation, the task
offers a unique opportunity to analyze what turns of information LLMs pay attention to as the multi-turn conversation
progresses. As a reminder, the summary task involves a user introducing new documents at each turn. The focus of
our analysis is therefore to understand whether document introduction order (across turns) affects the likelihood of the
LLM citing a document.

In Figure 10, we plot the the results of our analysis. Each row corresponds to the analysis of summaries gen-
erated at a given turn in the sharded simulation. At turn 1 (top row), 96% of the cited documents were intro-
duced in the first turn. The missing 4% correspond to hallucinated citation to documents that were not intro-
duced, and explains why none of the rows’ distribution sum to 100%. At turn two (second row from the top),
summaries include citation in roughly equal proportion for turn-1 and turn-2 documents (i.e., 48% and 49%).
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Figure 10: Analysis of citation patterns in
summaries generated by LLMs with the
SHARDED simulation. At each turn, the
LLM generates an updated summary (y-
axis), which includes citations from the
documents that have been revealed up to
this turn. Percentages in a row do not add
up to 100% due to citation hallucinations
that occur for some models.

We interpret this to mean that in 2-turn conversations, LLMs pay roughly
equal attention to documents in either turn. Analysis of summaries gener-
ated in turns 3-8 of sharded simulations reveal an imbalance in the docu-
ments the LLM cites to. In eighth-turn summaries, 20% of citations are to
documents introduced in turn 8, compared to 8% from turn 2 and 3 (150%
difference). At a high-level, as the conversation progresses, LLMs are most
likely to cite either documents in the first or last turns, and less likely to
cite documents introduced in intermediary (middle) turns. This finding
mirrors findings of a loss-in-the-middle phenomena of LLMs paying more
attention to documents at the start or end of their provided context, at the
cost of middle-context content [29, 50, 40]. In short, we observe that the
lost-in-the-middle phenomena occurs not only in single-turn long-context
settings, but also in multi-turn conversation. We name this phenomenon
loss-in-middle-turns.

We note that the analysis presented in Figure 10 averages numbers across
the 15 LLMs included in our main experiment. Even though we observe
some loss-in-middle-turns in all models, the magnitude of the effect varies
across models, typically with more performant models having a more muted
effect, showing they have better capabilities of handling attribution across
multiple turns of context. We do not include model-specific analyses in this
work and leave it for future work.

F.4 Overly-verbose Assistant Responses

Relative Assistant Verbosity

Task 0-20% 20-40% 40-60% 60-80% 80-100%

Assistants re-
sponses are ...

shortest short median long longest

Code 55.3 52.3 48.9 46.9 42.5
Math 62.9 64.0 62.1 60.9 56.1
Database 43.8 40.0 37.3 34.3 31.3
Actions 41.5 49.6 54.2 53.6 50.8
Data-to-Text 25.0 24.3 24.0 23.1 21.8
Summary 15.4 14.7 13.5 12.0 10.3

Average 40.7 40.8 40.1 38.6 35.6

Table 7: Averaged performance (P ) of LLMs on the six
experimental tasks, arranged based on model relative ver-
bosity (length of response). Performance degrades when
models generate longer responses on five of the six tasks.

When simulating multiple conversations based on a com-
mon instruction, we observe variation in responses, par-
ticularly in the length of the response generated by the
LLM. To understand how verbosity (length of a response)
affects model performance, we perform a verbosity anal-
ysis.

One difficulty with assessing verbosity is that different
tasks and instructions might require different levels of
verbosity. For example, generating a Python function
likely requires a longer than generating an SQL query. In
order to regularize for task-specific variations, we assign
a verbosity tag calculated for each (LLM, instruction)
tuple. For each simulated sharded conversation involving
an LLM on an instruction, we calculate the average length
of the per-turn response (number of total characters in
assistant responses divided by number of turns). We then
bin conversations into quintiles according to this metric.

More specifically, since we simulated N = 10 conversations for each (model, instruction) pair, we assign 2 simulations
per quintile, which we name: shortest, short, median, long, and longest. We then calculate averaged performance (P )
on the six experimental tasks, arranged based on this verbosity tag. Results are summarized in Table 7.

On five of the six tasks, performance is 10-50% higher in simulated conversations with shortest response length,
compared to conversations with longest response length. As assistant responses get longer (left to right in the Table),
performances gradually drop. The Actions task is the only task where such an effect is not observed, and where shortest
response length from the assistant is detrimental.

Predominantly however, models achieve higher performance when they generate shorter responses. We hypothesize
that deterioration due to over-verbosity is due to longer responses typically containing more assumptions or hypotheses
from the assistant, which can lead to confusion in following turns. On the other hand, short turns tend to be focused
(e.g, a single clarification question), and keep the conversation on track.

Deterioration due to over-verbosity is note-worthy, as besides deteriorating underlying model performance, longer
responses also take longer for users to read, which is undesirable. The finding therefore indicates that longer LLM
responses are bad both for models and end-users.
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Name Description Example

Answer attempt The response contains a complete answer at-
tempt to the question that can be extracted ver-
batim.

The dog is 50 meters away from the house.

Clarification The response is a brief single question that di-
rectly inquires about one aspect of the query.

To calculate the distance, I need to know how
long the dog ran. Could you provide more infor-
mation about that?

Interrogation The response contains multiple questions ad-
dressed to the user.

I cannot answer the question without knowing
(1) speed, (2) duration, and (3) starting position.
Please tell me about these points and I can cal-
culate the distance!

Discussion The response discusses the question in detail
without answering, asking, or refusing to an-
swer.

The question is trying to measure the distance
between the dog and the house. We can calcu-
late based on this equation: [Equation]. [. . .]

Hedging The response provides multiple answer candi-
dates based on hypotheticals (ifs, cases).

1. If the dog was originally in the house, it
would be 50 meters away now.
2. If the dog was at the park, it would be 100
meters away from the house now.

Refusal The response refuses to answer the question
without a follow-up question or a request.

I can’t answer your question because I don’t
have sufficient information.

Missing The response is empty. [blank]

Table 8: Definition of turn categories. We include the description in the prompt to categorize assistant responses.

Appendix G Assistant Response Categorization

We categorize each assistant response into one of the seven categories to capture the answer attempt and evaluate if
that is the case, as well as to understand the model behavior tendency. Herlihy et al. [27] defined seven turn categories
for LLM responses and classified them using LLM, uncovering that GPT-4 prefers answering directly even when
the query is underspecified. Motivated by this study, we similarly define seven response categories which we list in
Table 8, together with example responses. Key differences are discussion and answer attempt; we observed many
responses containing large body of text formulating the question in our preliminary experiments, which led to redefining
“Miscellaneous” from [27] into “Discussion” in our experiment. “Direct Response” in [27] corresponds to our “Answer
Attempt.”

Appendix H Model Access

We accessed models that were used in the experiments from various vendors. The short form names we used throughout
the paper, the corresponding versions, and the providers are summarized in Table 9. Except for the exploration with
various temperatures (Section 7.2), we set the temperature to T = 1.0 and used the default values for the rest of
configurable hyperparameters. We set the maximum response length to 1,000 tokens for all models, and did not
observe models exceeding this limit frequently when generating responses. For thinking models (o3, Deepseek-R1), we
increased the limit to 10,000 tokens to account for the additional test-time compute (thinking tokens).

Appendix I Task-specific Implementation details

We provide task implementation details. For each task, we specify: (1) the selection of original single-turn fully-
specified instruction, (2) the evaluation metric that was repurposed from the original dataset, (3) and what the initial
system messages consists of (if any).
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Short Form Name Version Access Provider

4o GPT-4o gpt-4o-2024-11-20 OpenAI / Microsoft API
4o-mini GPT-4o-mini gpt-4o-mini-2024-07-18 OpenAI API
4.1 GPT-4.1 gpt-4.1-2025-04-14 OpenAI / Microsoft API
o3 o3 o3-2025-04-16 OpenAI / Microsoft API

3-Haiku Claude 3 Haiku claude-3-haiku-20240307 Amazon Bedrock
3.7-Sonnet Claude 3.7 Sonnet claude-3-7-sonnet-20250219 Amazon Bedrock

2.5-Flash Gemini 2.5 Flash gemini-2.5-flash-preview-04-17 Gemini API
2.5-Pro Gemini 2.5 Pro gemini-2.5-pro-preview-03-25 Gemini API

3.1-8B Llama-3.1-8B-Instruct N/A Local Ollama
3.3-70B Llama-3.3-70B-Instruct N/A Amazon Bedrock
4-Scout Llama-4-Scout-17B-16E N/A Together AI

CMD-A Command-A command-a-03-2025 Cohere API
R1 Deepseek-R1 N/A Amazon Bedrock
OLMo2 OLMo2-13B N/A Local Ollama
Phi-4 Phi-4 N/A Local Ollama

Table 9: Specific model versions used as part of our experiments. For each model, we define the exact Version of the
model accessed (for models that have versioning) and the Access Provider to facilitate result reproducibility.

I.1 Code

The Code instructions are sourced from a combination of HumanEval [10], a dataset of 164 basic Python program-
ming problems given the function header and the docstring that specifies the problem, and LiveCodeBench [31], an
evolving dataset of Python algorithmic challenges. In particular, we source from the “call-based” problem subset in
LiveCodeBench v5, with the difficulty of either “Easy” and “Medium”, to align the solution formats between the two
sources.

We first sharded all HumanEval problems following the protocol mentioned in Appendix C, obtaining 45 high quality
sets of shards that meet the criteria. The rest of the dataset were discarded because of being simplistic, leaving little
room to construct sufficient number of shards for a problem. Subsequently, we shuffled and sharded the aforementioned
subset from LiveCodeBench until obtaining 100 valid sharded instructions.

We follow the original prompts used by the benchmark authors as much as possible for the single-turn (FULL and
CONCAT) evaluation. Specifically, FULL prompt from HumanEval includes the function header and the docstring
provided as prompt in HumanEval dataset, and FULL & CONCAT from LiveCodeBench includes starter_code
consisting of the function signature.

Both HumanEval- and LiveCodeBench-derived problems come with test cases which we use to compute the functional
accuracy of the answer attempt by the LLMs. We re-use the evaluation codebase maintained by Jain et al. [31], which
(1) wraps the candidate function in a test module, (2) execute given the inputs, and (3) checks the equivalence of
the output from the expected output, with a default timeout set to prevent the evaluator from getting trapped during
evaluation (e.g., brute-force implementation may not pass under the set time budget). In case when multiple code blocks
are present in a response, the answer extraction module selects the last function definition in the last markdown code
block.

I.2 Database

The Database instructions are sourced from the validation portion of the Spider dataset [86]. We note that though a
more recent version of Spider has been released (Spider 2.0 [44]), the instructions in the second iteration are more
advanced and represent less typical database use, and we select instructions from the more realistic Spider 1.0.

The authors of Spider categorized queries into four levels of difficulty (EASY, MEDIUM, HARD, XHARD), based on
the syntax complexity of a reference SQL query. We filtered out queries of EASY complexity, as they tended to yield
fewer than three shards when processed. The rest of the 433 natural language queries in Spider were gradually sharded
until reaching a total of 107 valid sharded instructions.
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Each original instruction in Spider supplies a database schema, represented in SQL as a series of table schema (i.e.,
each define a series of columns including name, type, and optional index). We include the database schema as part
of the system message (i.e., prior to the first turn of conversation), and informing the LLM that users will provide
natural-language queries that must be answered using a database with the provided schema.

Each original instruction in Spider is paired with a reference SQL solution. We follow Zhong et al. [90] for the
evaluation methodology. For a given original instruction, the candidate and reference SQL queries are executed on a
fixed set of databases, and exact match of the results on all databases is required to mark the candidate as successful
(Score = 100). If a discrepancy is observed on any test database, the candidate is incorrect (Score = 0). One limitation of
SQL execution is that false positives can occur: two queries can return the same output on a given database, even when
they are not semantically equivalent. Zhong et al. [90] found that by evaluating on an increased number of databases,
false positives become negligible. Finally, any invalid candidate that does not successfully execute (e.g., syntax error) is
considered incorrect (Score = 0).

I.3 Actions

The Actions instructions are sourced from the released test portion of the Berkeley Function Calling Leaderboard V3
(BFCL) [85]. BFCL V3 consists of three sub-genre of instructions: (1) Parallel, (2) Multiple, and (3) Multiple-Parallel.
Initial experimentation with the sub-genres identified Parallel as the most suited for sharding, as Parallel instructions
specify multiple subtasks that should be used and combined into a single action that accomplishes the entirety of the
instruction. We shuffled all the BFCL V3 Parallel instructions, and sharded gradually until we obtained 105 valid
sharded instructions.

We note that though a more recent iteration of BFCL includes multi-turn instructions, it differs from sharding experiments
as it does not involve underspecification, with each turn having an independent intermediate solution (which we call
episodic multi-turn conversations). Our implementation in comparison shards original instructions allowing us to
simulate multi-turn underspecified conversations for this task setting. The Background section (Section 2) discusses the
relationship between episodic and underspecified multi-turn conversation more in-depth.

Each instruction in BFCL comes with tool set documentation, a JSON object that specifies the set of available actions
(APIs) for the assistant to complete user instructions. We include the tool set documentation as part of the system
message, along with a message indicating that user queries will require the use of the provided tools to be completed.

Each instruction in BFCL comes with a reference answer, consisting of the API calls that should be called to accomplish
the user instruction. The maintainers of BFCL have released an evaluation toolkit that assesses semantic equivalence
between a candidate answer and the reference answer. We leverage the official evaluation toolkit, assigning a score of
S=100 for candidate answers that are considered semantically equivalent to the reference answer, and a score of S=0
otherwise. When the evaluation toolkit is not able to parse a candidate answer (e.g., a syntax error), the candidate is
considered incorrect (S=0).

I.4 Math

The Math instructions are sourced from the “main” portion of the GSM8K dataset [14]. We did not perform a filter
on the original 8,700 instructions. We shuffled the instructions and sharded incrementally until we obtained 103 valid
sharded instructions. Each GSM8K is paired with a numerical reference answer. We used the official toolkit released
alongside GSM8K to standardize numerical answers (i.e., strip formatting, etc.). Standardized candidate numerical
answers can then be compared through exact match to the reference answer. If the toolkit detects a match, the candidate
answer is considered correct (Score=100), and incorrect otherwise (Score = 0). A short, single-sentence system prompt
is used to indicate to the assistant that it will be solving mathematical problems.

I.5 Data-to-Text

The Data-to-Text instructions are based on instructions in the released test set ToTTo dataset [59]. In ToTTo, fully-
specified instructions have the following information elements: (1) a HTML-formatted table extracted from a Wikipedia
page, (2) a subset of cells in the table that have been highlighted, (3) the name of the Wikipedia page that included
the Table, (4) the name of the Section in the Wikipedia page that included the Table. Given these elements, the task
objective is to generate a caption for the Table specifically focusing on the highlighted cells and considering the available
meta-data. Instructions were shuffled and sharded incrementally until we obtained 120 valid sharded instructions.

For each instruction, we generate sharded instructions by assigning different information elements to individual shards.
The first shard consists of the initial HTML-formatted table without highlighting. The second shard provides an updated
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table with the highlighting present, the third shard provides the Wikipedia page name, the fourth shard provides the
Wikipedia Section name. Finally, a fifth shard provides a fixed set of 10 randomly-selected example captions from the
training set of the ToTTo dataset.

Each instruction in ToTTo is assigned one to three reference captions that were collected by authors of the original
dataset. Evaluation on a candidate caption calculates the BLEU score [58] between the candidate and the set of available
references, following the evaluation methodology from the original paper.

The Data-to-Text is a refinement task; at each turn, the model is provided an additional shard of information, and is
explicitly told to update its response considering all the information provided so far. As a refinement task, assistant
responses at each turn are automatically categorized as answer attempts, and the extracted answer is considered to be
the entire response. The system instruction informs the model that its response should consist solely of a table caption,
without additional text (such as intro, outro, or politeness wording).

I.6 Summary

The Summary instructions are based on samples of the Summary of a Haystack dataset [40]. We reuse the entire
instructions from Summary of a Haystack to produce 92 sharded instructions. The original instructions each consist
of a haystack – 100 documents for a total of 100,000 tokens of content – and a user query. The goal of the task is to
generate a bullet-point-formatted summary of the query-relevant insights that occur in the collection of documents, and
use citation to attribute information in each of the bullet points back to the source documents.

The original setting of the Summary of a Haystack purposefully includes a large amount of redundancy (each insight
is repeated across at least 6 documents) to evaluate LLMs’ ability to thoroughly cite sources. However, we simplify
the task for the multi-turn setting, as the 100,000-token haystacks restrict the variety of models we can evaluate. We
instead follow subsequent work in selecting smaller Haystacks (“mini-Haystacks”) [3]. Mini-Haystacks consist of
20 documents and ensure that each reference insight is repeated across three documents. For each instruction, we
produce ten shards by randomly assigning two documents per shard. The initial shard further specifies high-level task
instruction, by specifying the user query, the expected bullet-point format, with a formatted citation.

Summary of a Haystack relies on an LLM-based metric (Joint Score) to compute the quality of the summary in terms
of both the relevance of the candidate bullet points (coverage) and the quality of the generated attribution within the
bullet points (citation). The authors note that the metric is recall-based, such that longer summaries are likely to score
higher than shorter ones. To account for length bias, the original task instructs models to generate summaries of at
most 300 words, which we include in our experiments as well. Specifically, models are instructed in all settings to
generate summaries of up to 300 words. We observed that in multi-turn settings, models often forget this instruction,
leading to non-adherence to the instruction. To avoid penalizing models that correctly remain within the 300-word
limit, we truncate summaries that go beyond the limit, removing words in equal proportion from summary bullet points,
such that evaluated summaries all respect the 300-word limit. We note that this tendency for LLMs to go beyond is
further discussed in Appendix F, where we observe that across tasks, model answer attempts get “bloated” over turns of
conversations. In single-turn settings (full, concat), LLMs largely respect the 300-word length limit.

The summary task is a refinement task. Assistant responses at each turn are automatically categorized as answer
attempts, and the entire response is considered to be the extracted answer.

I.7 Translation

The Translation instructions were collected from the WMT 2019 task on document-level translation [70]. Specifically,
we selected 30 documents German-English pairs. Document pairs are aligned at the sentence level (i.e., English and
German documents in a pair have the same number of sentences). We truncated the selected pairs to their first ten
sentences, and sharded the document instruction such that each shard would introduce exactly two sentences from
the document, for a total of five shards. We provided shards in German, and the task consisted in translating into
English (i.e., German→English). Hence, Shard 1 introduces the first two German sentences, Shard 2 introduces German
sentences 3-4, etc. In the sharded setting, the task requires the LLM to translate the document with all the provided
sentences so far. In the full settings, the LLM is provided the entire document (10 sentences) in the first turn. In the
concat setting, the LLM is also provided all sentences in the first turn, but separated into the shards (two sentences at a
time).

In initial experiments, we experimented with other sharding strategies, including breaking shards at a specific number
of words (rather than sentence boundary), and increasing the length of documents (from 10 to 20 sentences), without
observing significant differences in results. This led us to adopt the setting we describe: sharding every two sentences,
and truncating at 10-sentences.
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TURN 1
[User] calculate the total calorie count of Andrew's pastries

TURN 2
[User] Andrew made 200 mini cinnamon rolls.

### Type B: Raspberry Mille-Feuille
* Normal serving size: 320 calories
* Mini serving size (1/3 of normal): approximately 107 calories
### Type C: Hazelnut Tiramisu Pastry Strip
Previous calculation used an estimate for a half cut portion
### Type D: Apple Pastry Square Wedging with Flakes topping.
Previous calculations already included the adjustments
* Average per serving: assuming 1/4 what a full piece contains,  
therefore, 1/4 of (250)  is approximately 62 calories/piece

TURN 4
[User] Each mini pastry has about one-third the calories of its 
normal-sized version.

TURN 6
[User] I also remember that a regular blueberry muffin has about 
450 calories.

Extracted: 45,000    Score = 0

TURN 5
 

 [User] A regular-sized cinnamon roll has about 600 calories.

[Assistant] Let's assume we have some information about 
Andrew's pastries.

Question: Calculate the total calorie count of Andrew's 4 
pastries.

Assumptions:

* Andrew has 4 different types of pastries.
* We have the calorie information for each type of pastry.
* Each piece is a whole unit (e.g., one croissant, not half a 
croissant).

### Type A: Chocolate Croissant
* Calories per serving: 250 calories / pastry
* Servings: 1
* Total Calories for Type A: 250 calories

### Type B: Raspberry Mille-Feuille
* Calories per serving: 320 calories / pastry
* Servings: 1
* Total Calories for Type B: 320 calories

### Type C: Hazelnut Tiramisu Pastry Strip (12 pieces)
* However, for this example we will use the average piece 
containing half of one strip which is around,
* Half piece: + Average Calories per serving: 80/120 = (calories) 
67 (for 3 strips)
* Total Calories for Type C: 84 calories

### Type D: Apple Pastry Square Wedging with Flakes topping.
* We assume that type d pastry has three quarters of what a full 
piece contains 
* Average per serving: 2/3 * 250 / (4 + 1) = 125 calories/piece

[Assistant] We were previously calculating the calorie count for 
a specific set of pastries, but now we have some additional 
information about Andrew's mini cinnamon rolls
To add these to our previous total, let's assign this new pastry 
set:

### Type E: Mini Cinnamon Rolls
* Calories per serving: 85 calories / mini roll (assuming each 
mini roll is approximately 1 inch in diameter)
* Total pieces: 200
* Total Calories for Type E: 20z0 * 85 = 17,000 calories

[Assistant] We have another pastry to add to the mix.
### Type F: Mini Blueberry Muffins
* Calories per serving: approximately 120 calories / mini muffin
* Total pieces: 300
* Total Calories for Type F: 300 * 120 = 36,000 calories

TURN 3
[User] Oh, Andrew also baked 300 mini blueberry muffins. 

[Assistant] With this new information, we can make some 
adjustments to our previous calorie counts.
 

### Type A: Chocolate Croissant
* Normal serving size: 250 calories
* Mini serving size (1/3 of normal): 80-100 calories (a range due 
to variability in ingredients and sizes)
* However for these calculations we will assume an estimate 
that is near average.

[Assistant] With this new information, we can calculate the 
calorie count for Andrew's mini cinnamon rollsz

### Type E: Mini Cinnamon Rolls
* Calories per normal-sized serving: 600
* Calories per mini serving (1/3 of normal): approximately 200 
calories / mini roll
* Total pieces: 200
* Total Calories for Type E: 200 * 200 = 40,000 calories

[Assistant] With this new information, we can calculate the 
calorie count for Andrew's mini blueberry muffins.

### Type F: Mini Blueberry Muffins
* Calories per normal-sized serving: 450
* Calories per mini serving (1/3 of normal): approximately 150 
calories / mini muffin
* Total pieces: 300
* Total Calories for Type F: 300 * 150 = 45,000 calories

Figure 11: Example simulated multi-turn conversation for the Math task. This conversation simulation was with
assistant model Llama3.1-8B-Instruct. The sharded instruction consists of six shards. The correct answer to the
instruction is 85,000 calories.

We evaluated performance with the BLEU metric[58], the standard metric for translation tasks, which was used as well
in the original WMT 2019 competition.

Appendix J Example Simulated Conversation

Figure 11 provides an example conversation that was simulated during our experiments in the sharded setting. The
simulation was conducted on the Math task, with a 6-shard instruction, and using the Llama3.1-8B-Instruct as the
assistant. This conversation illustrates the following properties described in the rest of the paper: (1) the LLM makes
assumptions early in the conversation (in Turn 1, describing four pastries that are irrelevant), (2) although it correctly
interprets user-provided information, it also unnecessarily updates the information for assumptions it made (Turn 4),
(3) this leads to unnecessary complexity, and the model ultimately forgets that the initial instruction was to calculate
total calorie count, and returns only half of the calculation (just for Mini Blueberry Muffin). In short, this conversation
illustrates the lost in conversation phenomenon: when the user instruction is underspecified (Turns 1-4), the LLM makes
assumptions that detract from the conversation and lead to incorrect or incomplete answers.

Appendix K Gradual Sharding Implementation

To evaluate the effect of instruction granularity on performance degradations, we conducted the gradual sharding
experiment.

We selected sharded instructions that had exactly eight shards, leading to a total of eight instructions across three tasks
(Code, Math, Data-to-Text). We then leveraged an LLM (GPT-4o) to expand each instruction into 7 variants with
differing number of shards. The LLM was instructed to merge the original sharded instruction into a smaller sharded
instruction with two to seven shards. The instruction authorized minor rephrasing to allow for individual shards to be
fluent, but encouraged the LLM to remain as close as possible to the original instruction in wording.

As such, each of the original instruction can be paired to: (1) a concat instruction (one-shard), and (2) 7 sharded
instructions, ranging from two to eight shards. Applying this method to the 31 instructions yields a total of 248
instructions, with an equal number for the number of shards (from 1 to 8) and on the identical underlying problems.

We ran simulations using the 248 instructions, simulating 10 conversations per instruction and model for two models:
GPT-4o and GPT-4o-mini. Findings of the gradual sharding experiment are described in Section 6.3.
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Appendix L Temperature Experiment Implementation

To evaluate the effect of temperature on aptitude and reliability of LLMs in single- and multi-turn settings, we conducted
the following temperature experiment.

We selected 10 instructions from each of four tasks: Code, Database, Actions, and Math (for a total of 40). We ran
experiments with two models (GPT-4o and GPT-4o-mini). For each instruction and each temperature combination,
we conducted simulations for three conversation settings: full, concat, and sharded. For each conversation setting, we
varied temperature parameters to three values: 0.0, 0.5, and 1.0. For the full and concat setings, this corresponds to
three temperature combinations (as only the assistant temperature can be modified), whereas there are a total of nine
combinations for the sharded setting, as both the assistant and user temperature is varied.

We chose to increase the number of simulations to 20 runs per condition (compared to 10 in the main experiment), as
the focus of the experiment is to measure variations in model aptitude and reliability, and added simulation runs lead to
better percentile estimates used in calculating metrics. This added requirement was not computationally expensive as
the temperature experiment involved a limited number of models (2 vs. 15) and instructions (40 vs. 600) in comparison
to our main experiment.

Findings of the experiments are described in Section 7.2.

Appendix M Recap & Snowball Experiment Implementation

We leverage SHARDED conversation logs to simulate RECAP setting, since RECAP only differs from SHARDED
in terms of an additional recapitulation turn that gathers all the previous user utterances. This implementation
also allows us to directly compare the effect of the approach against the SHARDED results. Specifically, for each
SHARDED simulation run, we appended the “recap” turn and run the simulation one more turn. Since it requires
stacking the past turns every turn, we simulate the entire conversations from scratch for SNOWBALL simulations.
The prompt concatenates the previous turn user utterances as bullet points, followed by the text for the current turn:
Just to reiterate:\n - [past utterance 1]\n- [past utterance 2]\n\n Also,\n[current utterance]. We
note that what is accumulated for both RECAP and SNOWBALL are verbalized utterances from the user simulator,
not the original shards themselves. For both simulation settings, we run N = 10 simulations on all of the sharded
instructions on four tasks (Code, Database, Math, Actions) and report the mean of averaged performance over the tasks,
which is shown in Table 2.

Appendix N On obtaining deterministic outputs from LLMs

As we demonstrated in our experimental results, setting the temperatures to zero still leads to high unreliability, due to
compounding effect of subtle non-determinism over tokens and turns.

In theory, greedy decoding (i.e., T = 0) will always pick the argmax over the vocabulary distribution. However, it is
reported that hardware limitations on floating point operations cause slightly different intermediate values, which results
in a ripple effect of larger value changes and therefore different tokens being selected.

Notable model providers acknowledge the non-determinism implicitly or explicitly; Anthropic recommends sampling
multiple times to cross-validate output consistency,4 Google also highlights that their model outputs are mostly
deterministic,5 and OpenAI recommends setting seed parameter to further reduce the non-determinism.6

Nevertheless, we caution users that multi-turn conversations can be increasingly unreliable owing to divergent LLM
responses.

4https://docs.anthropic.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-hallucinations.
5https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/adjust-parameter-values#temperature.
6https://platform.openai.com/docs/advanced-usage#reproducible-outputs.
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Appendix O Prompts

O.1 Sharding

We show the prompts for the sharding process below, using Math as an example task. Double-bracketed terms are
placeholders that get replaced with the actual data. Other tasks share the same outline with different exemplars and
rules to enforce stable outputs. We refer the readers to the GitHub repository for the exact prompts on other tasks.

Segmentation

You are a given a fully specified instruction, and your task is to segment the instruction into a
units of information that each reveal a single piece of information of the instruction.
You must output a list of segments in the following JSON format:
[

{"segment": "[exact excerpt from the instruction]"},
{"segment": "[exact excerpt from the instruction]"},
...

]

Rules:
- [Non-overlapping] The segments must be non-overlapping and cover the entire instruction. You can
optionally leave some gaps for non-essential portions of the original instruction (delimiters,
headers, etc.)
- [Minimalistic] You should split the information in the segments to as small as possible. If you
have a compound expression (X and Y), you should split it into two segments. Each segment should
represent a unit of information.

Example Query:
What are the names and locations of the stadiums that had concerts that occurred in both 2014 and
2015?

Output:
{"segments": [

{"segment": "names and locations"},
{"segment": "stadiums"},
{"segment": "concerts"},
{"segment": "in both 2014"},
{"segment": "and 2015"}

]}

Now complete the task for the following fully specified instruction:

[[INSTRUCTION]]
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Rephrasing

You are given segments of a fully specified instruction, and your task is to: (1) choose one that
will be the initial shard of a multi-step query, and then (2) rephrase each segment into a
conversational version that are provided to the system in a follow-up turn of the conversation.

Your output should be a JSON object in the following format:
{

"initial_segment": "[exact excerpt from the instruction]",
"initial_shard": "conversational version of the initial segment",
"shards": [
{"segment": "[exact excerpt from the instruction]", "shard": "conversational version of the
segment taking the rest of the instruction into account"}
]

}

Example:

Full Query:
What are the names and locations of the stadiums that had concerts that occurred in both 2014 and
2015?

Segments:
[

{"segment": "names and locations"},
{"segment": "stadiums"},
{"segment": "concerts"},
{"segment": "in both 2014"},
{"segment": "and 2015"}

]

Output:
{

"initial_segment": "stadiums",
"initial_shard": "popular stadiums",
"shards": [

{"segment": "concerts", "shard": "the stadiums should have concerts during a period"},
{"segment": "in both 2014", "shard": "the concerts should have occurred in 2014 in the
stadiums"},
{"segment": "and 2015", "shard": "the concerts should have also occurred in 2015 in the same
stadiums"},
{"segment": "names and locations", "shard": "for the stadiums, returned both the name and
location"}

]
}

Rules:
- [Transform each segment] Make sure each segment is included either as the initial shard or in the
rest of the shards. Do not forget any segments.
- [Short initial shard] Make the initial shard short, not a full sentence, similar to how users use a
search engine like Google.
- [Order of shards] Order the shards in order of importance, from most to least important to the
initial shard. You do not need to keep the order the segments that are provided in.

Now complete the task for the following fully specified instruction and segments:

Fully Specified Instruction:
[[QUESTION]]

Segments:
[[SEGMENTS]]
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Verification

You are given an instruction that fully specifies a problem, and a list of shards. Your task is to
decide whether all the information from the full instruction is captured by the shards.

If not, you should output the information unit from the instruction that is not captured by the
shards.

Example 1:

Instruction:
What are the names and locations of the stadiums that had concerts that occurred in both 2014 and
2015?

Shards:
{"initial_segment": "stadiums", "initial_shard": "I'm looking for active stadiums", "shards":
[{"segment": "concerts", "shard": "the stadiums should have concerts during a period"}, {"segment":
"in both 2014 and 2015", "shard": "the concerts should have occurred in both 2014 and 2015"},
{"segment": "names and locations", "shard": "for the stadiums, returned both the name and
location"}]}

Output:
{"converage": "complete"}

Example 2:
Instruction:
Which Asian countries have a population that is larger than any country in Africa?

Shards:
{"initial_shard": "I'm interested in learning about countries in Asia", "shards": [{"shard":
"consider the population size of these Asian countries"}, {"shard": "the population should be
compared in size"}, {"shard": "specifically, compare to the population of African countries"}]}

Output:
{"coverage": "incomplete", "missing_segment": "the shards do not specify that the population of the
Asian countries should be *larger* than the population of any African countries"}

You must output in JSON format as shown in the examples above.
Now complete the task for the following fully specified instruction and shards:

Instruction:
[[QUERY]]

Shards:
[[SHARDS]]
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O.2 Experiments

The experiments involve several LLM calls with specific prompts to simulate the conversation, which we list below. We
refer readers to the GitHub repository for how they are incorporated.

User simulator

You are simulating a user of an interactive LLM system (like ChatGPT).
The user is inherently lazy, and answers in short form, providing only minimal information to the
system. You should not be proactive.

Here's the conversation so far:
[[CONVERSATION_SO_FAR]]

Here are the shards that have already been revealed:
[[SHARDS_REVEALED]]

Here are all the shards that have not been revealed yet:
[[SHARDS_NOT_REVEALED]]

You must generate a response to the conversation so far. Here are the rules:
- [Providing a shard] You can reveal the content of a shard to the system in your response if it will
help the system move closer to answering the problem. You should select the shard to reveal that is
most "basic" and currently the most relevant.
- [One Shard at a Time] You should only reveal at most one shard at a time.
- [Reveal Entire Shard] If you reveal a shard, you must make sure to include *all the information in
the shard*. For example, if the shard is "your symptoms are that you have a headache in the
mornings", your response can't just be ``yeah I have headaches'', you must say ``yup mostly headaches
in the mornings``.
- [Irrelevant Clarifications] If the system asks you a question irrelevant to the shards, asks you a
generic question (``Can you give me a hint?``), you should respond with an answer that does not
provide a shard. (``I don't know``, ``Is that really important?``, etc.) You should not reveal any
information beyond what is available in the shards.
- [No Repeated Shards] You should not reveal the same shard more than once. Carefully review the
already revealed shards, and only reveal a shard if its `shard_id` is not on the list.
- [Rephrase Shards] If you reveal a shard, you should rephrase it in a conversational way. Do not
copy the shard verbatim.
- [Do Not Ask Questions] Your response should always be declarative sentences, and not questions.
- [Brevity of Response] You should favor being succint. Your answer can also have typos, improper
grammar, capitalization, etc. You are simulating a real person talking to an AI, who is in a hurry.
- [Format] Your response should be formatted as a JSON object with the following keys:

- `response`: The response to the conversation so far.
- `shard_id`: The shard you are revealing to the system. The shard_id can be an integer, or -1 if
you did not reveal any shards.

For example:
{"response": "I don't know", "shard_id": -1}
or:
{"response": "yeah I want it to [...]", "shard_id": 1}
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Response strategy categorization

You are reviewing a multi-turn conversation between a user and an assistant, and are given the last
turn of the conversation.

Here is the full specification of the problem the system is attempting to solve:
[[INITIAL_SHARD]]

Specification:
[[SHARDS]]

You must classify the response of the assistant according to the response type:
- `answer_attempt`: The response contains a complete answer attempt to the user's question (not
templated or hypothetical), that can be extracted verbatim. See the task-specific answer description
for more details.
- `clarification`: The response is short (less than 100 words) and contains a single question
addressed to the user that directly inquires about an aspect of the user's query. A clarification
turn cannot be long (see `discussion`), cannot contain a vague question (see `discussion`) and cannot
contain multiple questions (see `interrogation`).
- `interrogation`: The response contains multiple questions addressed to the user, sometimes
organized in a list or bullet-points.
- `discussion`: The response discusses the question in detail, without providing a final answer,
asking a specific clarification question, or a refusal to answer. The response may or may not contain
a vague question (e.g., “What else can I help you with?”).
- `hedge`: The response contains multiple answer candidates based on hypotheticals (ifs) or branching
(case 1, case 2) with corresponding descriptions.
- `refuse`: The response contains an explicit or implicit refusal to answer the user's question
without a follow-up question or a request.
- `missing`: The response is empty/blank.

You must output your answer in the following JSON format:
{"response_type": "refuse|missing|answer_attempt|hedge|clarification|interrogation|discussion"}

Rules:
- The assistant giving a hint at how an answer could look like is not a final answer. You should only
select `answer_attempt` if the conversation could end at this stage with the user having an entirely
final answer to the problem they've formulated.
- [Task Specific Answer] [[ANSWER_DESCRIPTION]]

Conversation's last turn:
[[CONVERSATION_SO_FAR]]
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Answer Extraction

You are reviewing a multi-turn conversation between a user and an assistant, and are given the last
turn of the conversation.
In the final response from the assistant, a final answer has been provided. Your goal is to extract
verbatim what the answer is:
- If the answer is short (less than 10 words), then you should copy verbatim what the answer is in
the `answer` field.
- If the answer is long, then you should produce the answer with an ellipses, to indicate the exact
start and end of the answer (e.g, ```def funny_function(n): [...] return funny_output```). You
should include *at least* 4 words or one full line for the start (before the ellipses) and *at least*
4 words or one full line for the end (after the ellipses), such that the answer can be identified
exactly.

Rules:
- [Exact Answer Only] only extract the exact answer, and nothing else (including ``` for code blocks,
or intro/outro text).
- [Verbatim Only] Only extract verbatim text, do not modify the text in any way. If there's a typo,
an error, you must absoltutely include it, and not correct it in any way.
- [Task Specific Answer] [[ANSWER_DESCRIPTION]]
- [String output] the <answer_str> must be a string, not a number and not a dictionary.

You must output your answer in the following JSON format:
{"answer": "<answer_str>"}

Conversation's last turn:
[[CONVERSATION_SO_FAR]]
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